问题 A: 约数个数
时间限制: 2 Sec 内存限制: 128 MB
提交: 313 解决: 39
提交 状态 讨论版
命题人:admin
题目描述
p^q表示p的q次方,正整数M可以分解为M=(p1^a1)*(p2^a2)*(p3^a3)*……*(pn^an)的形式,其中p1,p2……pn为质数(大于1并且只能被1和自身整除的数叫做质数)。a1,a2……an为整数。例如18=(2^1)*(3^2),45=(3^2)*(5^1)。
给出n和一个质数g,以及正整数M分解后的形式,求M的所有约数中,有多少能被g整除。
输入
第一行 两个数 n和g。 0<n<=10 1<g<100。g为质数。
第二行 n个数 p1到pn 1<pi<100 pi为质数(1<=i<=n)。
第三行 n个数 a1到an 0<=ai<=20 ai为整数(1<=i<=n)。
保证对于任意的i,j(i != j) ,pi != pj
输出
一个数
表示M的所有约数中,有多少能被g整除。
样例输入
<span style="color:#212529">2 3
3 5
2 2
</span>
样例输出
<span style="color:#212529">6</span>
提示
样例解释:
M=(3^2)*(5^2)=9*25=225
225能被3整除的约数有3 9 15 45 75 225 共6个。
因为数据很大,所以是不能直接求的。但是我们注意到pi为质数,所以如果pi中没有g,那么个数为零,如果有g,那么通过排列组合中的乘法原理可以求出答案来。因为不是让你求其中具体有那几个约束,所以只用乘法原理求个数就行了。
代码:
#include <iostream> //约数个数。
#include <algorithm>
using namespace std;
typedef long long ll;
const int inf=307;
struct node
{
int p,a;
} arr[inf];
bool compare(node a,node b)
{
return a.p<b.p;
}
int main()
{
int n,g;
scanf("%d %d",&n,&g);
int flag=-1;
for(int i=0;i<n;i++)
scanf("%d",&arr[i].p);
for(int i=0;i<n;i++)
scanf("%d",&arr[i].a);
sort(arr,arr+n,compare);
for(int i=0;i<n;i++)
if(arr[i].p==g&&arr[i].a!=0)
{
flag=i;
}
if(flag==-1)
{
cout<<0<<endl;
return 0;
}
ll sum=0;
ll ans=arr[flag].a;
for(int i=0;i<n;i++)
{
if(i!=flag)
{
ans*=(arr[i].a+1);
}
}
cout<<ans<<endl;
//一直进行计算从sum中选出零个一直到sum个来。
//排列组合公式的使用。
return 0;
}