约数的和及约数的个数

这篇博客详细介绍了如何计算一个数的约数个数和所有约数之和。通过质因数分解,得出约数个数公式为质因数指数和的乘积,而约数和则通过累加每个质因数幂次的和得到。文章提供了两种算法实现,包括O(n*logn)的时间复杂度算法和欧拉筛求约数和的O(n)算法,并以实例进行了解释和验证。此外,还给出了求1到n所有数约数个数的和的高效方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

约数的和及约数的个数

1.约数的个数等于:所有质因数的指数加上1后的乘积;
若一个数分解质因数后为(am)*(bn),其中a,b均为质因数;m,n均为相应质因数的指数.
则约数个数为(m+1)(n+1).
例如: (1)12=2²3,质因数有2和3,其指数分别为2和1,那么12的约数有(2+1)(1+1)=6(个);
(2)60=2²35,质因数2,3,5的指数分别为2,1,1,那么60的约数有(2+1)(1+1)(1+1)=12(个).
2.一个数所有约数之和等于:先把每个质因数从0次幂一直加到其最高次幂,再把每个相应质因数幂的和相乘.
若一个数分解为(am)*(bn),则这个数所有约数的和为: (a0+a1+a2+a3+…+am)*(b0+b1+b2+b3+…+bn).
例如:(1)12=2²3,则12所有约数的和为:(20+21+22)*(30+3^1)=74=28;
(2)60=2²35=(20+21+22)*(30+31)*(50+5^1)=746=168.

[ AHOI2005]约数研究 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) (求1-n约数的个数的和)

CF1512G Short Task - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)(欧拉筛求约数和)

法一:求1-n任意数约数和  O(n*logn)

#define ll long long
int s[1000010];
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        int i,t;
        memset(s,0,sizeof(s));
        for(i=1;i<=n;i++)
        for(t=i;t<=n;t+=i)
            s[t]++;  // 求约数的个数
    }
}
//求约数的和
for(i=1;i<=n;i++)
for(t=i;t<=n;t+=i)
   s[t]+=i;
//s[i]为i的约数和


法二 欧拉筛求约数和  O(n)
    // s=an*bm*ct*....
    // res=(a0+a1+...an)*(b0+b1+...bm)*(c0+c1+...ct)*...
    
void get_fc(){
	res[1]=fc[1]=1;
	for(int i=2;i<maxn;i++)
		res[i]=-1;
	for(int i=2;i<maxn;i++){
		if(!vis[i]){
			pr[++cnt]=i;  // 质数
			fc[i]=i+1;
		}
		for(int j=1;j<=cnt&&i*pr[j]<maxn;j++)
        {
			vis[i*pr[j]]=1;
			if(i%pr[j]==0){
				fc[i*pr[j]]=fc[i]+(fc[i]-fc[i/pr[j]])*pr[j];  // 合数
				break;
			}
			fc[i*pr[j]]=fc[i]+fc[i]*pr[j];
		}
	}
}
get_fc();
for(int i=2;i<maxn;i++){
	if(fc[i]>=maxn)
		continue;
	if(res[fc[i]]==-1)
		res[fc[i]]=i;
}
//res[i] 为任意数的约数和
//法一:(o(n)算法)  //求1到n的约数和的和

// ∑(1->n)f(i) = sum = ∑ ⌊n/i⌋∗i  //约数和公式
for(i=1;i<=n;i++) sum+=(n/i)*i;   

//法二(延伸自法一)   // 求1到n的约数和的和  <O(n)12为例,列出来是12,6,4,3,2,2,1,1,1,1,1,1
发现这里面有些数是重复的,考虑能不能把这些重复的一次算出来
把那些相同的值用区间来表示,那只要求出左右端点l,r来就好了
l比较好求,观察上面的数列,l 就是上一个r加1,初始l=1
那 r怎么求呢?其实很简单
r=n/(n/l)
l是那个数列的下标,所以(n/l)就是约数,那 r 就显然了,如果不知道为什么,那就再看一遍“1−n中有几个数是 d 的倍数”。
    
ll sum(int n) {
    if(n<=1) return n;
    ll ans=0;
    for(ll l=1,r;l<=n;l=r+1) {
        r=n/(n/l);
        ans+=(n/l)*(l+r)*(r-l+1)/2;
    }
    return ans;
}

题解 P2424 【约数和】 - zzlzk 的博客 - 洛谷博客 (luogu.com.cn) (法二 证明)

<think>嗯,用户想用C++编写一个计算约数的程序。首先,我得明确约数的定义,也就是一个数的所有正约数(不包括自身)之。比如说,6的约数是1、2、3,所以约数是1+2+3=6,这就是完全数的情况。 接下来,我需要考虑如何高效地计算约数。直接的方法是从1遍历到n-1,检查每个数是否是n的约数,然后累加。但这种方法的时间复杂度是O(n),当n很大时效率不高。有没有更优化的方法呢? 想到质因数分解的方法。根据数论中的知识,一个数约数可以通过其质因数分解式来计算。例如,如果n的质因数分解为$n = p_1^{a_1} \times p_2^{a_2} \times \dots \times p_k^{a_k}$,那么约数(包括1但不包括n本身)的公式应该是每个质因数的幂次从0到a_i的等比数列相乘,再减去n本身。不过,用户可能需要的是不包括n本身的约数,比如完全数的判断,这时候总要减掉n。 不过,仔细想想,约数通常指的是所有正约数,包括1自身,但有时候题目可能要求不包括自身。这里用户可能指的是不包括自身的情况,比如完全数的例子。所以,在计算时需要注意这一点。 例如,当计算n的约数时,正确的做法是找出所有小于n的正约数。因此,计算总后需要减去n本身。 那么,如何高效地找出所有约数呢?可以考虑遍历到sqrt(n),每次找到一对约数。例如,当i是n的一个约数时,n/i也是一个约数。这样可以减少遍历的次数,时间复杂度降到O(sqrt(n))。 具体步骤可能是这样的: 1. 初始化sum为0。 2. 遍历i从1到sqrt(n)。 3. 如果i是n的约数,则sum += i。 4. 同时,如果n/i不等于i且不等于n本身,sum += n/i。 5. 最后,sum减去n,得到不包含自身的约数。 需要注意处理i=1的情况,避免重复计算。同时,对于平方数的情况,比如n=4,当i=2时,n/i=2,这时候不需要重复加。 然后,根据这个思路,编写代码。例如,用户提供的引用中有求最大公约数的代码,但这里需要的是约数,所以需要不同的方法。 另外,需要处理输入输出,用户输入一个整数,程序输出其约数。可能需要考虑大数的情况,比如使用long long类型。 测试用例的话,比如输入6,应该输出6(1+2+3);输入28,输出28(1+2+4+7+14);输入12,输出16(1+2+3+4+6)。 现在,把这些步骤转化为C++代码。首先,写一个函数来计算约数,然后在主函数中输入数值并输出结果。 可能出现的错误包括:忘记处理平方根的情况,或者重复添加相同的约数,或者在i=1时的处理。此外,当n为0或负数时,需要处理错误输入,但用户可能希望只处理正整数。 综上,编写代码的结构应该是: - 输入一个正整数n。 - 计算所有小于n的正约数。 - 输出结果。 接下来,按照这个思路写出代码,并确保正确性效率。</think>### 如何用C++编写计算约数的程序 #### 方法分析 约数定义为**所有能整除该数的正约数**(通常包括1但不包括自身,具体需根据需求定义)。例如,6的约数为 $1+2+3=6$[^1]。以下是实现步骤: 1. **遍历优化**:只需遍历到 $\sqrt{n}$,当 $i$ 是约数时,$\frac{n}{i}$ 也是约数 2. **边界处理**:避免重复计算平方根情况(如 $i = \frac{n}{i}$) 3. **特殊值处理**:排除自身(根据需求决定是否包含) #### 代码实现 ```cpp #include <iostream> #include <cmath> // 使用sqrt函数 using namespace std; // 计算约数(不包括自身) int divisorSum(int n) { if (n <= 1) return 0; // 1没有真约数 int sum = 1; // 1是所有大于1的数的约数 int sqrt_n = sqrt(n); for (int i = 2; i <= sqrt_n; ++i) { if (n % i == 0) { sum += i; int counterpart = n / i; if (counterpart != i && counterpart != n) { sum += counterpart; } } } return sum; } int main() { int num; cout << "请输入一个正整数:"; cin >> num; cout << num << "的约数为:" << divisorSum(num) << endl; return 0; } ``` #### 代码说明 1. **复杂度**:时间复杂度为 $O(\sqrt{n})$,比暴力遍历 $O(n)$ 更高效 2. **关键逻辑**: - `sum` 初始化为1(因为1是除1外所有数的约数) - 循环从2开始到 $\sqrt{n}$,检测每个数是否能整除 $n$ - 当发现约数 $i$ 时,同时计算对应的 $\frac{n}{i}$,避免重复添加 3. **测试案例**: - 输入6 → 输出6($1+2+3$) - 输入28 → 输出28($1+2+4+7+14$) - 输入12 → 输出16($1+2+3+4+6$) #### 算法优化方向 1. **预处理质因数分解**:利用质因数分解公式 $n = p_1^{a_1}p_2^{a_2}...p_k^{a_k}$,约数可表示为 $\prod_{i=1}^k \frac{p_i^{a_i+1}-1}{p_i-1} - n$[^2] 2. **处理大数**:使用`long long`类型存储结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏的雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值