53. 最大子序和

核心思路就是看当前最大和大于0还是小于0,如果大于0就并入最大子序列和的候选集,否则就以当前的元素为新序列

思路一:动态规划dp

nums[i-1]记录当前最大和,若其大于0就可以组成最大序列的候选项,若小于0则nums[i]为新序列

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        for i in range( 1, len(nums)):
            nums[i] = nums[i] + max(nums[i - 1], 0)
        return max(nums)
        

思路二:

与思路一类似,但是是实时更新最大值的

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        res = nums[0]
        summ = 0
        for i in nums:
            if summ >= 0:
                summ += i
            else:
                summ = i
            res = max(res, summ)
        return res
        

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值