1、基本原理。
2、实现。
//假定图中最大顶点个数为5
#define MAX_VERTEX 5
//采用二维数组来表示图
//两个顶点间的距离为1000 ,代表两顶点间无直接相连的边
int graph[MAX_VERTEX][MAX_VERTEX]=
{
{0,1,2,1000,4},
{1,0,1000,8,2},
{2,1000,0,1000,6},
{1000,8,1000,0,3},
{4,2,6,3,0}
};
/**
* @brief SPFA 在图graph中,从结点编号为nodeID的结点出发
* 求解从结点nodeID出发到图中其他所有点的最短距离
* @param graph
* @param nodeID
*/
void SPFA(int graph[MAX_VERTEX][MAX_VERTEX],
unsigned nodeID)
{
bool inQueue[MAX_VERTEX];
int minDistance[MAX_VERTEX];
std::queue<unsigned> nodeQueue;
for(int i=0;i<MAX_VERTEX;++i)
{
inQueue[i]=false;
minDistance[i]=1000;
}
nodeQueue.push(nodeID);
inQueue[nodeID]=true;
minDistance[nodeID]=0;
while(!nodeQueue.empty())
{
//队首元素出队
unsigned nodeNo=nodeQueue.front();
nodeQueue.pop();
inQueue[nodeNo]=false;
for(int i=0;i<MAX_VERTEX;++i)
{
if(minDistance[nodeNo]+graph[nodeNo][i]<minDistance[i])
{
minDistance[i]=minDistance[nodeNo]+graph[nodeNo][i];
if(inQueue[i]==false)
{
nodeQueue.push(i);
inQueue[i]=true;
}
}
}
}
std::cout<<"nodeID\t"<<"minDistance"<<"\n";
for(int i=0;i<MAX_VERTEX;++i)
std::cout<<i<<"\t"<<minDistance[i]<<"\n";
std::cout<<std::endl;
}
//测试函数
int main()
{
// DijsktraAlgorithm(graph,0);
SPFA(graph,0);
return 0;
}
3、运行截图。