机器学习
weekroc7
一枚渣渣硕士,人工智能初级学生
展开
-
如何实现python代码的整体缩进与退格
要实现python代码的整体缩进与退格,只需要选中代码,然后按相应的快捷键即可。其中:缩进 :Tab键退格 :Shift + Tab键本文链接:https://blog.csdn.net/C_chuxin/article/details/83379923...转载 2020-04-24 20:43:24 · 6182 阅读 · 0 评论 -
机器学习算法中 GBDT 和 XGBOOST 的区别有哪些?
转知乎wepon大神帖子:https://www.zhihu.com/question/41354392看了陈天奇大神的文章和slides,略抒己见,没有面面俱到,不恰当的地方欢迎讨论:传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。传统GBDT在优化时只用到一阶导数信息,xg...转载 2019-06-19 16:50:43 · 199 阅读 · 0 评论 -
机器学习之特征选择
补充:1.基于决策树选择特征,属于嵌入式特征选择方法,深度较浅的特征节点对应的分类能力越强大。满足条件1.深度较浅 2.特征出现次数较少2.L1正则化选择特征,没有选到的特征不代表不重要而是与其他的重复相关度高,再通过l2正则化进行交叉检验。3.用深度学习来自动选择特征,从深度学习模型中选择某一神经层的特征后就可以用来进行最终目标模型的训练了。参考文献:1.《美团机器学习实...原创 2019-04-19 10:21:07 · 237 阅读 · 0 评论 -
最大似然函数和最小二乘法的区别和理解
最小二乘法和最大似然估计的区别和理解:它们的原理不同对于最小二乘法,当从模型中选择n个样本观察值时,参数的合理性要求就是让模型更好地拟合这个样本数据,就是让观察值和估计值之间的误差更小。而对于最大似然函数,当从模型中选择n个样本观察值时,合理的参数估计就是让从模型抽取这n个样本观察值的概率最大化。这是从不同的原理出发的两种参数估计法。在最大似然法中,通过选择参数,让已知数据在某种意义上最有可...原创 2019-04-22 20:08:36 · 8350 阅读 · 1 评论 -
LR和SVM的异同点
在大大小小的面试过程中,多次被问及这个问题:“请说一下逻辑回归(LR)和支持向量机(SVM)之间的相同点和不同点”。第一次被问到这个问题的时候,含含糊糊地说了一些,大多不在点子上,后来被问得多了,慢慢也就理解得更清楚了,所以现在整理一下,希望对以后面试机器学习方向的同学有所帮助(至少可以瞎扯几句,而不至于哑口无言ha(*^-^*))。(1)LR和SVM的相同点第一,LR和SVM都是...转载 2019-04-22 16:01:09 · 299 阅读 · 0 评论 -
TextRank算法
有关什么是抽取式自动摘要法?通过提取文档中已存在的关键词,句子形成摘要;text rank算法基于page rank算法,用于文本生成关键字和摘要。1.page rank?最开始page rank用来计算网页的重要性,网页可看做节点,若网页A到B存在一条链接,则表示从网页A到B有一条有向边。S(Vi)表示网页i的中重要性,d是阻尼指数,In(Vi)表示指向网页i的网页集合,Out(Vj...原创 2019-04-26 14:38:57 · 590 阅读 · 2 评论 -
模糊K均值聚类算法
与K-means的不同之处在于:允许存在样本属于多个簇,也就是我们说的可重叠的聚类算法。思想:模糊K均值聚类并不是将对象分给最近的簇,而是计算向量和各个簇之间的相关性。假设有一个向量V,有K个簇,V和这K个簇的中心的距离是d1,d2,....,dkd_1,d_2,....,d_kd1,d2,....,dk,则V到第一个簇的相关性U1=1d1d1U_1=\frac{1}{\frac {d...原创 2019-04-14 21:08:06 · 3069 阅读 · 1 评论 -
RBF核函数和Linera核函数关系
1.Linear核主要用于线性可分的情形。参数少,速度快,对于一般数据,分类效果已经很理想了。2. RBF核主要用于线性不可分的情形。参数多,分类结果非常依赖于参数。通过训练数据的交叉验证来寻找合适的参数,验证过程比较耗时。个人经验:使用libsvm,默认参数,RBF核比Linear核效果稍差。通过进行大量参数的尝试,一般能找到比linear核更好的效果。至于到底该采用哪种核,要根据具体...原创 2019-04-14 20:56:12 · 7212 阅读 · 0 评论 -
卷积神经网络的心得体会
1.如何计算卷积后矩阵向量大小?feature_map尺寸的计算公式为:[(原图片尺寸-卷积核尺寸)/步长]+1,假如原图上尺寸大小是:33,卷积核大小是22,步长为1,则卷积后图片大小为,2*2;如下图卷积过程所示:2.为什么卷积核有效?我们知道,有些卷积核计算后的feature_map是一个3*3的矩阵数据,在第三列的绝对值最大,说明原始图片上对应的地方有一条垂直方向的特征,即像素数...原创 2019-04-25 22:14:25 · 4220 阅读 · 0 评论 -
【美团机器学习实践】问题建模
机器学习解决问题的通用流程,主要分为4大部分:1.问题建模2.特征工程3.模型选择4.模型融合问题建模包含三部分:评估指标、样本选择、交叉验证1.1评估指标评估指标用于反映模型效果,预测问题中,将预测结果和真实结果进行比较,为:实际项目中,线下和线上的评估指标尽可能变化趋势保持一致,线上成本明显高于线下实验成本,在线上实验较长时间并对效果进行可信度检验(如t−testt-tes...原创 2019-04-14 08:49:28 · 425 阅读 · 0 评论