mac 环境下安装 redis 及配置

一、下载

redis官网: https://redis.io

二、解压安装

打开shell窗口

1、进入下载目录

      cd  /Users/xxxx/Downloads 

2、解压

      tar xzf redis-5.0.5.tar.gz

3、将解压后文件夹放到/usr/local    (先对该文件授权:su)

  mv redis-3.2.8 /usr/local/

4、切换到相应目录

  cd /usr/local/redis-3.2.8/

5、编译测试

     sudo make test

     此处可能会报错:[exception]: Executing test client: couldn't execute "src/redis-benchmark": 
make[1]: *** [test] Error 1 make: *** [test] Error 2

  解决:执行如下命令

       make distclean 
       make 
       make test

6、编译安装

  sudo make install

7、配置

     在redis目录下建立bin,etc,db三个目录

sudo mkdir  /usr/local/redis-3.2.8/bin
sudo mkdir  /usr/local/redis-3.2.8/etc
sudo mkdir  /usr/local/redis-3.2.8/db

    把/usr/local/redis/src目录下的mkreleasehdr.sh,redis-benchmark, redis-check-rdb, redis-cli, redis-server拷贝到bin目录

cp /usr/local/redis-3.2.8/src/mkreleasehdr.sh .
cp /usr/local/redis-3.2.8/src/redis-benchmark .
cp /usr/local/redis-3.2.8/src/redis-check-rdb .
cp /usr/local/redis-3.2.8/src/redis-cli .
cp /usr/local/redis-3.2.8/src/redis-server .

    拷贝 redis.conf 到 /usr/local/redis/etc下

cp /usr/local/redis-3.2.8/redis.conf /usr/local/redis-3.2.8/etc

   修改redis.conf

#修改为守护模式
daemonize yes
#设置进程锁文件
pidfile /usr/local/redis-3.2.8/redis.pid
#端口
port 6379
#客户端超时时间
timeout 300
#日志级别
loglevel debug
#日志文件位置
logfile /usr/local/redis-3.2.8/log-redis.log
#设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id
databases 16
##指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合
#save <seconds> <changes>
#Redis默认配置文件中提供了三个条件:
save 900 1
save 300 10
save 60 10000
#指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,
#可以关闭该#选项,但会导致数据库文件变的巨大
rdbcompression yes
#指定本地数据库文件名
dbfilename dump.rdb
#指定本地数据库路径
dir /usr/local/redis-3.2.8/db/
#指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能
#会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有
#的数据会在一段时间内只存在于内存中
appendonly no
#指定更新日志条件,共有3个可选值:
#no:表示等操作系统进行数据缓存同步到磁盘(快)
#always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全)
#everysec:表示每秒同步一次(折衷,默认值)
appendfsync everysec

   启动服务

 ./bin/redis-server etc/redis.conf

   查看日志

tail -f log-redis.log

 

 

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确和稳定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值