- 博客(5)
- 收藏
- 关注
原创 facebook时间序列预测算法prophet解读+实战
facebook时间序列预测算法prophet解读+实战原理解读一、时间序列的分解二、趋势项模型基于逻辑回归的趋势项基于线性回归的趋势项模型实战原理解读prophet与常用的自回归时间序列预测模型一样,本质上都是拟合过去,预测未来。作者雨中不同的视角是:在某些特殊日期,可能受到活动、节假日等影响,时间序列会产生一定的波动,因此作者将节假日序列引入了时间序列分解;同时作者在分解/拟合 趋势项的时候考虑到了趋势随时间的自然变化,引入了变点(change point)的概念,更有利于趋势项的拟合。一、时间序
2020-08-19 15:02:22 3148
原创 GPT2自动写作实战
GPT2自动写作实战实战中使用到的搜索词扩展方法基于模版的方法基于模型的方法基于GPT2自动写作的方法实战中使用到的搜索词扩展方法以手机为例,我们做这个任务的目的是为了自动生成指定手机+指定维度的文章/营销文案。例如:生成小米10的外观的文章。基于模版的方法基于模版的方法,很容易理解,先根据文章想写的内容范围,制作一批合适的模版,由于文章可能存在定制化需求(例如:生成一篇小米10和荣耀20的 文章,不同手机的参数不同),因此模版中的内容分为通用内容和定制内容,通用内容指的是对不同手机文章都能够适用的
2020-05-14 10:44:05 2723
原创 搜索词扩展实战
一些搜索词扩展实战的思考实战中使用到的搜索词扩展方法word2vec词向量相关性方法LDA相关性方法搜索词对 -- 置信度、支持度搜索词、购买物 -- 置信度基于业务规则的扩展方法结论思考实战中使用到的搜索词扩展方法我们做这个任务的目的是为了售卖搜索词包,因此我们本身就有一个完整的搜索词包,搜索词包中的搜索词都是规则的,不存在用户杂七杂八的搜索关键词。word2vec词向量相关性方法对源站...
2020-03-31 17:41:06 1597
原创 Query Expansion with Locally-Trained Word Embeddings论文解读
本来是调研一下如何做搜索词扩展,误打误撞读到这篇论文,该论文从标题来看似乎是做搜索词扩展的,但是本质上是通过用户输入的搜索词来挖掘出更准确的文本,来提供给用户阅读。
2020-04-01 14:17:14 342
原创 Query Expansion Using Word Embeddings 论文解读
Query Expansion Using Word Embeddings 论文解读整体思想基于word2vec挖掘查询词和扩展词之间的相关性搜索词和扩展词相关性基于极大似然估计的查询词和扩展词之间的相关性基于伪反馈的关联模型整体思想作者利用word2vec来挖掘查询词和扩展词之间的相关性;除此以外,为了弥补word2vec向量相似性的不足,引入了一些规则算法,例如:最大似然概率和基于基于伪反...
2020-03-31 16:58:55 585
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人