知识图谱(Knowledge Graph)的概念由谷歌于2012年正式提出,旨在实现更智能的搜索引擎,并且于 2013 年以后开始在学术界和业界普及,并在智能问答、情报分析、反欺诈等应用中发挥重要作用。
声明:我们这里谈及到的所有关于知识图谱的概念及技术都是问答系统方向的
知识图谱本质上是一种叫做语义网络(semantic network)的知识库,是一个有向图结构的一个知识库,其中图的结点代表实体(entity)或者概念(concept),而图的边代表实体/概念之间的各种语义关系,例如两个实体之间的上下位关系。
现有的语义网标准数据通常是由RDF三元组数据存储形式构成,即:<主语,谓语,宾语>。还有加入本体信息结构的OWL数据,其中包含本体的基本概念,例如类(Class),属性(Property ),实例(Individual)等。这段看不懂没有关系,可以理解成知识图谱的存储符合一种叫做RDF的规范,这个规范简单来说是由很多很多<主语,谓语,宾语>这样的三元组组成
直观理解就是上图这样的,每个节点代表一个实体(具有可区别性且独立存在的某种事物),每条边代表各个节点之间的联系,这种联系可以分为两类:若边连接的两端都是实体称这种联系为关系,即<实体,关系,实体>,如:<中国,首都,北京 >;若边连接的一端是实体另一端是字符串称这种联系为属性,即<实体,属性,属性值>,如:<姚明,身高,226cm>。