知识图谱综述及技术地图概览(智能问答系统)

知识图谱是语义网络,由实体和关系组成,用于智能问答、情报分析等领域。本文概述了知识图谱的逻辑结构、体系架构,包括模式层与数据层,并详细介绍了知识图谱的构建过程,如知识表示、实体识别、关系学习等。此外,还讨论了知识图谱的查询和推理计算,以及在语义搜索和基于知识的问答中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知识图谱(Knowledge Graph)的概念由谷歌2012年正式提出,旨在实现更智能的搜索引擎,并且于 2013 年以后开始在学术界和业界普及,并在智能问答、情报分析、反欺诈等应用中发挥重要作用。

声明:我们这里谈及到的所有关于知识图谱的概念及技术都是问答系统方向的

知识图谱本质上是一种叫做语义网络(semantic network)的知识库,是一个有向图结构的一个知识库,其中图的结点代表实体(entity)或者概念(concept),而图的边代表实体/概念之间的各种语义关系,例如两个实体之间的上下位关系

现有的语义网标准数据通常是由RDF三元组数据存储形式构成,即:<主语,谓语,宾语>。还有加入本体信息结构的OWL数据,其中包含本体的基本概念,例如类(Class),属性(Property ),实例(Individual)等。这段看不懂没有关系,可以理解成知识图谱的存储符合一种叫做RDF的规范,这个规范简单来说是由很多很多<主语,谓语,宾语>这样的三元组组成

直观理解就是上图这样的,每个节点代表一个实体(具有可区别性且独立存在的某种事物),每条边代表各个节点之间的联系,这种联系可以分为两类:若边连接的两端都是实体称这种联系为关系,即<实体,关系,实体>,如:<中国,首都,北京 >;若边连接的一端是实体另一端是字符串称这种联系为属性,即<实体,属性,属性值>,如:<姚明,身高,226cm>。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值