图网络模型原理详解(Graph Network)

《Relational inductive biases, deep learning, and graph networks》 这篇论文包含了一部分新研究、一部分回顾和部分统一结论,这篇文章涉及到的很多知识面,涉及到联结主义、行为主义、符号主义,其本身的模型并不难,但是要理解其提出来的背景及相...

2019-01-22 11:14:21

阅读数 2819

评论数 0

TransE模型:知识图谱的经典表示学习方法

传统的知识图谱表示方法是采用OWL、RDF等本体语言进行描述;随着深度学习的发展与应用,我们期望采用一种更为简单的方式表示,那就是【向量】,采用向量形式可以方便我们进行之后的各种工作,比如:推理,所以,我们现在的目标就是把每条简单的三元组< subject, relation...

2018-10-24 20:39:02

阅读数 3343

评论数 0

Linux常用命令总结

linux的目录结构 home:家.用户的家 普通用户的家目录文件在home下 例如:一个用户tom 在home就会存在tom的目录 root:超级管理员root的家 etc:存放配置文件 usr:存放共享的资源 linux的命令 常用的命令 查看帮助: man 命令 ...

2019-06-06 17:43:58

阅读数 13

评论数 0

Anaconda 换源更改镜像,删源

换国内源 windows 1 添加清华源:命令行中直接输入以下命令 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channel...

2019-05-12 17:16:25

阅读数 1050

评论数 1

python(五):python高级语法——装饰器

装饰器 1、函数名与变量 #### 一、 #### def foo(): print('foo') foo # 表示是函数 foo() # 表示执行foo函数 #### 二、 #### def foo(): print('foo') foo = lambda x: ...

2019-05-10 10:00:17

阅读数 17

评论数 0

python(四):python闭包

闭包 1. 函数引用 def test1(): print("--- in test1 func----") # 调用函数 test1() # 引用函数 ret = test1 print(id(ret)) print(id(test1)) #通过引用调用...

2019-05-09 11:59:53

阅读数 14

评论数 0

python(三):正则表达式及re模块的使用

re模块操作 在Python中需要通过正则表达式对字符串进行匹配的时候,可以使用一个模块,名字为re 1. re模块的使用过程 # 导入re模块 import re # 使用match方法进行匹配操作 result = re.match(正则表达式,要匹配的字符串) # 如果上一步匹配...

2019-05-08 14:36:51

阅读数 19

评论数 0

python(二):python高级语法——property属性

1. 什么是property属性 一种用起来像是使用的实例属性一样的特殊属性,可以对应于某个方法 # ############### 定义 ############### class Foo: def func(self): pass # 定义propert...

2019-05-07 19:32:19

阅读数 16

评论数 0

python(一):python高级语法——多继承以及MRO顺序

1. 单独调用父类的方法 # coding=utf-8 print("******多继承使用类名.__init__ 发生的状态******") class Parent(object): def __init__(self, name): prin...

2019-05-06 22:27:48

阅读数 16

评论数 0

深度学习(三):详解循环神经网络RNN,含公式推导

循环神经网络简介 循环神经网络(recurrent neural network, RNN)源自1982年由Saratha Sathasivam提出的霍普菲尔德网络。霍普菲尔德网络因为实现困难,在提出时并且没有被合适地应用。该网络结构也于1986年后被全连接神经网络以及一些传统的机器学习算法所取...

2019-04-29 15:59:40

阅读数 324

评论数 0

机器学习(八):最大熵模型

最大熵原理 最大熵原理认为,学习概率模型时,在所有可能的概率模型中,熵最大的模型是最好的模型。通常用约束条件来确定概率模型的集合,最大熵原理可以表述为在满足约束条件的模型集合中选取熵最大的模型 假设离散随机变量X的概率分布式P(X),其熵为: 熵满足下列不等式: 其中,|x|是...

2019-04-23 22:35:15

阅读数 21

评论数 0

深度学习(二):详解Word2Vec,从统计语言模型,神经网络语言模型(NNLM)到Hierarchical Softmax、Negative Sampling的CBOW和Skip gram

首先计算机只认识01数字,要对文本进行处理就需要将单词进行向量化 单词的向量化表示方法 独热表示one-hot 最早对于单词向量化使用的是独热表示。每个单词对应一个向量,这个向量维度等于词汇表的大小,也就是说我有一个词汇表,里面有一万个单词,那么单词的独热表示向量维度就是一万维,对于词...

2019-04-22 21:29:59

阅读数 168

评论数 0

深度学习(一):交叉熵损失函数,信息量,熵,KL散度

交叉熵损失函数「Cross Entropy Loss」,我们第一印象就是它如下的公式: 大多数情况下都是直接拿来使用就好,但是它是怎么来的?为什么它能表征真实样本标签和预测概率之间的差值?交叉熵函数是否有其它变种? 信息量 事件A:巴西队进入了2018世界杯决赛圈。 事件B:中国队进入了...

2019-04-19 14:52:43

阅读数 48

评论数 0

机器学习(七):逻辑斯蒂回归

逻辑斯蒂回归是机器学习中经典的分类方法 逻辑斯蒂分布 设X是连续随机变量,X服从逻辑斯谛分布是指X服从如下分布函数和密度函数: 其中,μ为位置参数,σ>0为形状参数 曲线在中心附近增长速度较快,在两端增长速度较慢,形状参数σ的值越小,曲线在中心附近增长的越快 二...

2019-04-16 11:16:06

阅读数 21

评论数 0

知识图谱(二):Linux下部署Fuseki,数据无法上传,无法创建dataset

之前部署Fuseki是在本机的Windows环境下,今天在Linux下部署了Fuseki,但是用 http://ip:3030 访问之后,无法添加数据 在服务器上启动了fuseki:bash fuseki-server 显示在3030端口启动了服务,但是在Windows下使用IP访问,点击...

2019-04-15 17:35:48

阅读数 55

评论数 0

机器学习(六):最大似然估计、参数估计

最大似然估计,通俗说,利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值 似然也是用于表征概率的,只不过这个概率是我们已经知道事件的结果,而去反推事件发生环境的参数的概率,我们认为事件是在最可能发生该事件的环境参数下发生的,有点绕 举个例子:抛硬币,假设我们随机抛掷一枚硬币1,0...

2019-04-14 09:03:15

阅读数 47

评论数 0

机器学习(五):朴素贝叶斯法

朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对于给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。朴素贝叶斯法实现简单,学习与预测的效率都和高,是一种常用的方法。 什么是条件概率? 所谓&q...

2019-04-12 10:22:30

阅读数 80

评论数 0

机器学习(四):感知机、感知机学习算法、学习算法的对偶形式

感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。它是神经网络与支持向量机的基础。 感知机模型 假设输入空间(特征...

2019-04-11 09:21:09

阅读数 27

评论数 0

机器学习(三):生成模型与判别模型、准确率,召回率,F值

生成模型与判别模型 监督学习方法分为生成方法和判别方法。所学到的模型分别称为生成模型和判别模型。 生成方法由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型: 这样的方法之所以称为生成方法,是因为模型表示了给定输入X产生输出Y的生成关系。典型的...

2019-04-10 08:59:24

阅读数 26

评论数 0

机器学习(二):模型评估与模型选择、正则化与交叉验证、L0,L1,L2正则化、泛化能力

训练误差与测试误差 机器学习的目的是使学习到的模型不仅对已知数据而且对未知数据都能有很好的预测能力。不同的学习方法会给出不同的模型。当损失函数给定时, 基于损失函数的模型的训练误差(training error) 和模型的测试误差(test error) 就自然成为学习方法评估的标准。机器学习方...

2019-04-09 08:42:44

阅读数 34

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭