中国剩余定理

中国剩余定理

概念

剩余定理又称孙子算经
来源于古人的问题:今有物不知其数,三三数之余二;五五数之余三;七七数之余二。问物几何?
古人解决方案:三人同行七十稀,五树梅花甘一枝,七子团圆月正半,除百零五便得知。
正好等价于现代同余理论: 23 ≡ 2 * 70 + 3 * 21 + 2 * 15 (mod 105)
原问题为求解如下同余方程组:
x ≡ 2(mod 3)
x ≡ 3(mod 5)
x ≡ 2(mod 7)

定理介绍和证明

自然数 m1,m2,…mk两两互质,并记N = m1 * m2* … * mk ,则同余方程组:
x ≡ b1 (mod m1)
x ≡ b2 (mod m2)


x ≡ bk (mod mk)
在模N同余的意义下有唯一解,N其实是所有模数的最小公倍数LCM。
方程组的最小正整数解: x0 = ((b1 X1 + b2 X2 +… + bK XK)(mod N) + N) mod N

证明:
模数两两互素,可令 x = (N/mi) * y,方程组等价于解同余方程:
(N/mi) * y ≡ 1(mod mi ),由裴蜀定理,此方程一定有解,可用扩展欧几里得算法求得一个yi。让xi = (N/mi) * yi,则方程组的解 x0 = (b1 X1 + b2 X2 +… + bK XK)(mod N),在模N意义下唯一。

例题

求解模线性方程组,形如:
a ≡ B[1](mod W[1])
a ≡ B[2](mod W[2])


a ≡ B[n](mod W[n])
W,B已知,W[i]>0 且所有W互质,求a (最小正整数解)。

代码实现
#include <iostream>
using namespace std;
//中国剩余定理
//所有模数互质 
typedef long long ll;

int W[51],B[51];

ll exgcd(ll a, ll b, ll &x, ll &y)//扩欧算法 
{
	if (!b)
    {
        x = 1,y = 0;
        return a;
    }
    ll gcd = exgcd(b, a % b, x, y);
    
	ll tmp = x;
	x = y;
	y = tmp - a / b * y; 
    return gcd;
}
int China(int * w, int * b, int k)
{
	ll x, y , a = 0;
	int m;
	ll N = 1;
	for(int i = 1; i < k + 1; i ++) N *= w[i];
	
	for(int i = 1; i < k + 1; i ++)
	{
		m = N / w[i];
		exgcd(w[i],m,x,y);
		a = (a + y *m * b[i]) % N;
	}
	return (a + N) % N;
}
int main()
{
  int n;
  cin >> n;//方程数

  for(int i = 1; i <= n; i ++)
  	cin >> W[i] >> B[i];
  
  int res = China(W,B,n); 
  cout << res <<endl;
  
  return 0;
}

解一般意义同余方程通用方案(模数不一定两两互素)

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)


x ≡ ak (mod mk)
以上模线性方程组,模数两两不一定互质

求解方案论述

模数不互质时,不能使用中国剩余定理求解。
可以用数学方法推导出求解方案。
取前两个模方程,变形为:
x mod m1 = a1
x mod m2 = a2
先求这两组方程的解x
前两方程再变形为(其实后k - 2 个模方程都可以变形为如下等式):
x = k1m1 + a1
x = k2m2 + a2
进一步推导:k1m1 + a1 = k2m2 + a2
k1m1 - k2m2 = a2 - a1 <= => k1m1 + k2m2 = a2 - a1
此线性同余方程有整数解的充要条件是 gcd(m1,m2) | a2 - a1 , 如无解,则整个模线性方程组无解。
用扩展欧几里得定理求得一特解k1
可得系数k1的通解为 k1 + t * m2 / gcd(m1,m2) ; t是任意整数,令 d = gcd(m1,m2),c = m2 / gcd(m1,m2) 显然,k1的最小正整数解为:(k1 % c + c)% c
前两个模方程的特解为: x = k1m1 + a1
前两个模方程的通解为:x= ( k1 + t * m2 / gcd(m1,m2)) m1 + a1 = ( k1 + t * c) m1 + a1
进一步整理,通解为:x = (m1*m2/d)t + k1m1+a1 ,m1*m2/d是m1和m2的LCM。
如果只有两个模线性方程组,那么 (( k1m1+a1)% LCM +LCM) % LCM 即为所求最小非负整数解。
如果后续有更多的模线性方程,则可以令 m1 = m1*m2/d ; a1 = k1m1+a1 ,得到新方程等式: x = m1 t + a1 = m1 k1+ a1
新方程和第三个方程继续组成方程组:
x = k1m1 + a1
x = k3m3 + a3
循环求解,直至最后第k号方程,循环结束后,
(( k1m1+a1)% LCM +LCM) % LCM 即为所求最小非负整数解,此刻,LCM = [m1,m2, … mk]

例题

给定 2n 个整数 a1,a2,…,an 和 m1,m2,…,mn,求一个最小的非负整数 x,满足 ∀i∈[1,n],x≡mi(mod ai)。
输入格式
第 1行包含整数 n。
第 2…n+1行:每 i+1 行包含两个整数 ai 和 mi,数之间用空格隔开。
输出格式
输出最小非负整数 x,如果 x 不存在,则输出 −1。
如果存在 x,则数据保证 x 一定在 64位整数范围内。
数据范围
1≤ai≤2^31−1,0≤mi<ai 1≤n≤25
输入样例:
5
35 30
22 2
16 5
28 23
32 18
输出样例:
-1
输入样例:
10
64 52
82 80
81 20
43 33
100 32
94 58
38 30
60 32
76 68
66 50
输出样例:
365469177332
输入样例:
5
8 5
18 9
10 7
14 9
3 0
输出样例:
2277

代码实现
#include <iostream>
using namespace std;

typedef long long ll;

ll exgcd(ll a, ll b, ll &x, ll &y)
{
	 if (!b)
    {
        x = 1; y = 0;
        return a;
    }
    ll d = exgcd(b, a % b, y, x);
    y -= (a/b) * x;
    return d;
}
int main()
{
  int n;
  cin >> n;
  
  bool flag = true;
  ll a1, m1; 
  cin >> a1 >> m1;
  
  for(int i = 0; i < n - 1; i ++)
  {
  	ll a2, m2;
  	cin >> a2 >> m2;
  	
  	ll k1, k2;
  	ll d = exgcd(a1,a2,k1,k2);
  	if((m2 - m1) % d)
  	{
  		flag = false;
  		break;
	}
	  k1 *= (m2 - m1) / d;
	  k1 = (k1 % a2 +a2) % a2;//adjust to minimal
	  
	  m1 = a1 * k1 + m1;//特解 
	  a1 = a1 / d * a2;// X = A1 K + M1 
	  
  }
  if(flag)
  {
  	cout << (m1 % a1 + a1) % a1 <<endl;
  }
  else puts("-1");
  return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值