给定一个整数数组 nums,求出数组从索引 i 到 j (i ≤ j) 范围内元素的总和,包含 i, j 两点。
示例:
给定 nums = [-2, 0, 3, -5, 2, -1],求和函数为 sumRange()
sumRange(0, 2) -> 1
sumRange(2, 5) -> -1
sumRange(0, 5) -> -3
说明:
- 你可以假设数组不可变。
- 会多次调用 sumRange 方法。
菜鸡的我只好找道简单题来找回信心。。。。没想到过是过了。。。。但时间太长了。。
class NumArray {
int[] a;
public NumArray(int[] nums) {
this.a = nums;
}
public int sumRange(int i, int j) {
int sum = 0;
for(int m = i;m <= j;++m){
sum += a[m];
}
return sum;
}
}
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* int param_1 = obj.sumRange(i,j);
*/
大神思路:首先在构造函数中,求得各区间的和,然后再在函数中根据输入的区间返回对应的值。
代码:
class NumArray {
int[] nums;
public NumArray(int[] nums) {
this.nums = nums;
if(this.nums.length == 0) return;
this.nums[0] = nums[0];
for(int i = 1;i < nums.length;++i){
this.nums[i] = this.nums[i-1] + nums[i];
}
}
public int sumRange(int i, int j) {
return i==0?nums[j]:nums[j] - nums[i-1];
}
}
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* int param_1 = obj.sumRange(i,j);
*/