给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入:[10,9,2,5,3,7,101,18]
输出: 4 解释: 最长的上升子序列是[2,3,7,101],
它的长度是 4。
说明:
- 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
- 你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
思路一:自底向上的动态规划,使用一个数组 dp[] 记录下以 nums[] 中的每一个元素作为末尾时最长的序列数,这样的状态转移方程:dp[i] = Math.max(dp[j]+1,dp[i]) 判断大小。复杂度为O(n2)。
class Solution {
public int lengthOfLIS(int[] nums) {
// 判空
if(nums == null || nums.length == 0) return 0;
// 创建同样大小的数组存储每一步的最大值
int len = nums.length;
int[] dp = new int[len];
// 假设每一步的以 nums[i] 结尾的序列都是 1
Arrays.fill(dp,1);
for(int i = 1;i < len;i++){
// 用末尾的值开始比较
int curVal = nums[i];
for(int j = 0;j < i;j++){
if(curVal > nums[j]){
dp[i] = Math.max(dp[j]+1,dp[i]);
}
}
}
// 遍历数组找到最大值
int res = dp[0];
for(int k = 0;k < len;k++){
res = Math.max(res,dp[k]);
}
return res;
}
}