leetcode.300 最长上升子序列

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4 
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。

说明:

  • 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
  • 你算法的时间复杂度应该为 O(n2) 。

进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

思路一:自底向上的动态规划,使用一个数组 dp[] 记录下以 nums[] 中的每一个元素作为末尾时最长的序列数,这样的状态转移方程:dp[i] = Math.max(dp[j]+1,dp[i]) 判断大小。复杂度为O(n2)。

class Solution {
    public int lengthOfLIS(int[] nums) {
        // 判空
        if(nums == null || nums.length == 0) return 0;
        // 创建同样大小的数组存储每一步的最大值
        int len = nums.length;
        int[] dp = new int[len];
        // 假设每一步的以 nums[i] 结尾的序列都是 1
        Arrays.fill(dp,1);
        for(int i = 1;i < len;i++){
            // 用末尾的值开始比较
            int curVal = nums[i];
            for(int j = 0;j < i;j++){
                if(curVal > nums[j]){
                    dp[i] = Math.max(dp[j]+1,dp[i]);
                }
            }
        }
        // 遍历数组找到最大值
        int res = dp[0];
        for(int k = 0;k < len;k++){
            res = Math.max(res,dp[k]);
         }
        return res;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值