问:你了解Quick Sort吗?给我说下你对快排的理解。
答:快排的话,其实也就是选择一个基准数,并通过一趟排序将要排序的数据分割成独立的两部分;这两部分有一部分是比另一部分的所有数据都要小的;这就是我对快排的概念的理解;但是快排不是稳定的,而且它的时间复杂度在对坏的情况下为O(n^2),平均时间复杂度为O(n*lg^n);
问:看来你对快排还是有点了解的;那么我假设被排序的数列中有N个数;遍历一次的时间复杂度是O(N),需要遍历多少次呢?并且你要讲解一下为什么?
答:至少lg(N+1)次,最多N次;至于为什么需要遍历这么多次;这是因为快速排序是采用的分治法进行遍历的,我将它看作一棵二叉树,它需要遍历的次数就是二叉树的深度了;所以我根据完全二叉树的定义,得出它的深度至少是lg(N+1)。因此,快速排序的遍历次数最少是lg(N+1)次;同时树的深度就是它的深度,所以最大值是N。因此,快读排序的遍历次数最多是N次;
问:那你知道快排的思路?
答:快排的思路其实也就是从右到左找小,小的调前;再到从左到右找大,大的调后;
手撕代码阶段
问:能给我把a数列{30,40,60,10,20,50}使用快排排序出来;
答:这是它的大概解题过程,如下图所示:
该题代码实现
/*
* 快速排序
*
* 参数说明:
* a -- 待排序的数组
* l -- 数组的左边界(例如,从起始位置开始排序,则l=0)
* r -- 数组的右边界(例如,排序截至到数组末尾,则r=a.length-1)
*/
public static void quickSort(int[] a, int l, int r) {
if (l < r) {
int i,j,x;
i = l;
j = r;
x = a[i];
while (i < j) {
// 从右向左找第一个小于x的数
while(i < j && a[j] > x){
j--;
}
//还没有超过某个界限,所以还可以进行排序
if(i < j){
a[i++] = a[j];
}
// 从左向右找第一个大于x的数
while(i < j && a[i] < x){
i++;
}
if(i < j){
a[j--] = a[i];
}
}
a[i] = x;
//递归调用
quickSort(a, l, i-1);
quickSort(a, i+1, r);
}
}
那里不太请多多指教!