Qwen3 特点
#Qwen3 是 Qwen 系列的最新一代大型语言模型,提供了一系列密集型和专家混合(MoE)模型。基于广泛的训练,Qwen3 在推理能力、指令遵循、代理能力以及多语言支持方面取得了突破性的进展,主要特点如下:
支持在单一模型内无缝切换思考模式(用于复杂的逻辑推理、数学和编程)和非思考模式(用于高效、通用的对话),确保在各种场景下都能实现最佳性能。
推理能力显著提升,在思考模式下超越了之前的 QwQ(思考模式)和 Qwen2.5 指令模型(非思考模式),在数学、代码生成和常识逻辑推理方面表现出色。
更好地符合人类偏好,在创意写作、角色扮演、多轮对话和指令遵循方面表现出色,能够提供更自然、引人入胜且沉浸式的对话体验。
强大的代理能力,能够在思考和非思考模式下精准地与外部工具集成,并在复杂的基于代理的任务中实现开源模型中的领先性能。
支持 100 多种语言和方言,具备强大的多语言指令遵循和翻译能力。
模型概览
Qwen3-0.6B 具有以下特点:
类型:因果语言模型
训练阶段:预训练和后训练
参数数量:0.6B
非嵌入参数数量:0.44B
层数:28
注意力头数量(GQA):Q 为 16,KV 为 8
上下文长度:32,768
快速上手
Qwen3 的代码已集成到最新的 Hugging Face transformers
中,建议您使用最新版本的 transformers
。
如果您使用的是 transformers<4.51.0
,将会遇到以下错误:
KeyError: 'qwen3'
以下是一个代码片段,展示如何使用该模型根据给定输入生成内容:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-0.6B"
# 加载分词器和模型
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# 准备模型输入
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True# 切换思考模式和非思考模式,默认为 True。
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# 执行文本补全
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# 解析思考内容
try:
# rindex 查找 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
对于部署,您可以使用 vllm>=0.8.5
或 sglang>=0.4.5.post2
创建一个与 OpenAI 兼容的 API 端点:
vLLM:
vllm serve Qwen/Qwen3-0.6B --enable-reasoning --reasoning-parser deepseek_r1
SGLang:
python -m sglang.launch_server --model-path Qwen/Qwen3-0.6B --reasoning-parser deepseek-r1
在思考模式和非思考模式之间切换
[!TIP]enable_thinking
开关也适用于由 vLLM 和 SGLang 创建的 API
enable_thinking=True
默认情况下,Qwen3 启用了思考能力,类似于 QwQ-32B。这意味着模型将使用其推理能力来提高生成响应的质量。例如,当显式设置 enable_thinking=True
或将其保留为 tokenizer.apply_chat_template
中的默认值时,模型将进入思考模式。
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # True 是 enable_thinking 的默认值
)
在这种模式下,模型将生成一个 <think>...</think>
块包裹的思考内容,随后是最终响应。
[!NOTE] 对于思考模式,建议使用 Temperature=0.6
、TopP=0.95
、TopK=20
和 MinP=0
(generation_config.json
中的默认设置)。不要使用贪婪解码,因为它可能导致性能下降和无限重复。
enable_thinking=False
我们提供了一个硬开关,严格禁用模型的思考行为,使其功能与之前的 Qwen2.5-Instruct 模型一致。这种模式特别适用于在需要禁用思考以提高效率的场景中。
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False # 设置 enable_thinking=False 禁用思考模式
)
在这种模式下,模型不会生成任何思考内容,也不会包含 <think>...</think>
块。
[!NOTE] 对于非思考模式,建议使用 Temperature=0.7
、TopP=0.8
、TopK=20
和 MinP=0
。
高级用法:通过用户输入在思考模式和非思考模式之间切换
我们提供了一个软开关机制,允许用户在 enable_thinking=True
时动态控制模型的行为。具体来说,您可以在用户提示或系统消息中添加 /think
和 /no_think
,以在多轮对话中逐轮切换模型的思考模式。模型将遵循最近一次的指令。
以下是一个多轮对话的示例:
from transformers import AutoModelForCausalLM, AutoTokenizer
class QwenChatbot:
def __init__(self, model_name="Qwen/Qwen3-0.6B"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.history = []
def generate_response(self, user_input):
messages = self.history + [{"role": "user", "content": user_input}]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = self.tokenizer(text, return_tensors="pt")
response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
# 更新历史记录
self.history.append({"role": "user", "content": user_input})
self.history.append({"role": "assistant", "content": response})
return response
# 示例用法
if __name__ == "__main__":
chatbot = QwenChatbot()
# 第一次输入(未使用 /think 或 /no_think 标签,默认启用思考模式)
user_input_1 = "How many r's in strawberries?"
print(f"User: {user_input_1}")
response_1 = chatbot.generate_response(user_input_1)
print(f"Bot: {response_1}")
print("----------------------")
# 第二次输入,使用 /no_think
user_input_2 = "Then, how many r's in blueberries? /no_think"
print(f"User: {user_input_2}")
response_2 = chatbot.generate_response(user_input_2)
print(f"Bot: {response_2}")
print("----------------------")
# 第三次输入,使用 /think
user_input_3 = "Really? /think"
print(f"User: {user_input_3}")
response_3 = chatbot.generate_response(user_input_3)
print(f"Bot: {response_3}")
注意为了 API 兼容性,当 enable_thinking=True
时,无论用户是否使用 /think
或 /no_think
,模型始终会输出一个 <think>...</think>
块。但如果禁用了思考模式,该块的内容可能为空。 当 enable_thinking=False
时,软开关无效。无论用户输入任何 /think
或 /no_think
标签,模型都不会生成思考内容,也不会包含 <think>...</think>
块。
代理能力使用
Qwen3 在工具调用能力方面表现出色。我们推荐使用 Qwen-Agent 来充分发挥 Qwen3 的代理能力。Qwen-Agent 内部封装了工具调用模板和工具调用解析器,极大地降低了编码复杂性。
要定义可用工具,您可以使用 MCP 配置文件、Qwen-Agent 的集成工具,或者自行集成其他工具。
from qwen_agent.agents import Assistant
# 定义 LLM
llm_cfg = {
'model': 'Qwen3-0.6B',
# 使用阿里巴巴模型工作室提供的端点:
# 'model_type': 'qwen_dashscope',
# 'api_key': os.getenv('DASHSCOPE_API_KEY'),
# 使用自定义的 OpenAI API 兼容端点:
'model_server': 'http://localhost:8000/v1', # api_base
'api_key': 'EMPTY',
# 其他参数:
# 'generate_cfg': {
# # 添加:当响应内容为 `<think>这是思考内容</think>这是答案` 时使用;
# # 不添加:当响应内容已通过 reasoning_content 和 content 分离时使用。
# 'thought_in_content': True,
# },
}
# 定义工具
tools = [
{'mcpServers': { # 您可以指定 MCP 配置文件
'time': {
'command': 'uvx',
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
},
'code_interpreter', # 内置工具
]
# 定义代理
bot = Assistant(llm=llm_cfg, function_list=tools)
# 流式生成
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ 介绍 Qwen 的最新进展'}]
for responses in bot.run(messages=messages):
pass
print(responses)
最佳实践
为了实现最佳性能,我们推荐以下设置:
采样参数:
对于思考模式(
enable_thinking=True
),使用Temperature=0.6
、TopP=0.95
、TopK=20
和MinP=0
。不要使用贪婪解码,因为它可能导致性能下降和无限重复。对于非思考模式(
enable_thinking=False
),建议使用Temperature=0.7
、TopP=0.8
、TopK=20
和MinP=0
。对于支持的框架,您可以将
presence_penalty
参数调整为 0 到 2 之间的值,以减少无限重复。但是,使用较高值可能会偶尔导致语言混淆和模型性能略有下降。
合适的输出长度:我们建议大多数查询使用 32,768 个标记的输出长度。对于高度复杂问题的基准测试(例如数学和编程竞赛中的问题),建议将最大输出长度设置为 38,912 个标记。这为模型提供了足够的空间来生成详细且全面的响应,从而提升其整体性能。
标准化输出格式:我们建议在基准测试时使用提示来标准化模型输出。
数学问题:在提示中包含 “请逐步推理,并将最终答案放在 \boxed{} 中。”
多项选择题:在提示中添加以下 JSON 结构以标准化响应:“请在
answer
字段中显示您的选择,仅使用选择字母,例如,"answer": "C"
。”
历史记录中不包含思考内容:在多轮对话中,历史模型输出应仅包含最终输出部分,无需包含思考内容。这已在提供的 Jinja2 聊天模板中实现。但是,对于不直接使用 Jinja2 聊天模板的框架,由开发人员确保遵循最佳实践。
·················END·················
分享
收藏
点赞
在看