《生成对抗网络》综述(附257页ppt下载)

由UC伯克利教授Pieter Abbeel主讲的GAN课程概览,涵盖GAN历史、理论进展、创新应用及未来趋势,包括DCGAN、WGAN、StyleGAN等模型介绍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


地址:

https://sites.google.com/view/berkeley-cs294-158-sp20/

主要由UC伯克利教授Pieter Abbeel主讲,他曾师从吴恩达,现任伯克利机器人学习实验室主任、伯克利人工智能研究(BAIR)实验室联合主任;covariant.ai联合创始人,总裁兼首席科学家、OpenAI顾问。

  • 隐式模型的动机和定义

  • 原始GAN (Goodfellow et al, 2014)

  • 评估指标: Parzen、Inception、Frechet

  • 一些理论: 贝叶斯最优判别器; Jensen-Shannon散度; 模式崩溃; 避免饱和

  • GAN进展

    DCGAN (Radford et al, 2016)

    改进GANs训练(Salimans et al, 2016)

    WGAN, WGAN- gp, Progressive GAN, SN-GAN, SAGAN

    BigGAN, BigGAN- deep, StyleGAN, StyleGAN-v2, VIB-GAN

  • 极具创造力的条件GAN

  • GANs与表征

  • GANs作为能量模型

  • GANs与最优传输,隐式似然模型,矩匹配?

  • 对抗性损失的其他用途:迁移学习等

  • GANs和模仿学习

摘录部分如下:


分享一个GAN教程PPT,后台回复【gansppt】即可获取

 

文章推荐

复旦大学邱锡鹏教授:一张图带你梳理深度学习知识脉络

算法初级职位内卷,如何选择适合自己的方向?

一位中国博士把整个CNN都给可视化了,可交互有细节,每次卷积ReLU池化都清清楚楚

机器学习在图像分类与识别中的应用(附PPT下载)


评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值