地址:
https://sites.google.com/view/berkeley-cs294-158-sp20/
主要由UC伯克利教授Pieter Abbeel主讲,他曾师从吴恩达,现任伯克利机器人学习实验室主任、伯克利人工智能研究(BAIR)实验室联合主任;covariant.ai联合创始人,总裁兼首席科学家、OpenAI顾问。

隐式模型的动机和定义
原始GAN (Goodfellow et al, 2014)
评估指标: Parzen、Inception、Frechet
一些理论: 贝叶斯最优判别器; Jensen-Shannon散度; 模式崩溃; 避免饱和
GAN进展
DCGAN (Radford et al, 2016)
改进GANs训练(Salimans et al, 2016)
WGAN, WGAN- gp, Progressive GAN, SN-GAN, SAGAN
BigGAN, BigGAN- deep, StyleGAN, StyleGAN-v2, VIB-GAN
极具创造力的条件GAN
GANs与表征
GANs作为能量模型
GANs与最优传输,隐式似然模型,矩匹配?
对抗性损失的其他用途:迁移学习等
GANs和模仿学习

摘录部分如下:



















分享一个GAN教程PPT,后台回复【gansppt】即可获取

文章推荐
一位中国博士把整个CNN都给可视化了,可交互有细节,每次卷积ReLU池化都清清楚楚

由UC伯克利教授Pieter Abbeel主讲的GAN课程概览,涵盖GAN历史、理论进展、创新应用及未来趋势,包括DCGAN、WGAN、StyleGAN等模型介绍。

3427

被折叠的 条评论
为什么被折叠?



