用户精细化运营是一种基于用户数据和行为分析的营销策略,旨在针对不同用户群体进行个性化运营。其核心在于通过深入了解不同用户群体的需求和行为,为每个用户提供定制化的产品和服务,以提升用户体验和满意度,进而实现数字营销的效果。以下将围绕用户精细化运营列举几项策略,以供大家交流讨论。
1.信息流搜索推荐
- 项目描述:基于用户行为特征、商品属性特征,通过多策略组合规则以及AB测试方式,实现精准商品推荐,提高用户留存。
- 项目内容:
(1)构建特征工程
- 构建用户画像:采集用户基本信息,如年龄、性别、机型、兴趣标签、用户经常打开APP的时间点;用户偏好如用户搜索、浏览、点赞、收藏、订阅相关商品所属类型;用户评论、留言的情感分析等诸多模型对用户进行分群
- 构建商品画像:采集商品基本信息,如类目、类型、属性等;建立商品标签体系,提取商品名称、商品详情文本特征,打上语义标签
- 构建环境画像:记录用户浏览、收藏、下单动作发生的时间点以及地点,用以构建环境画像
(2)指定推荐策略
- 相关性推荐:当用户画像与商品画像匹配度较高时,则进行相应商品推荐
- 冷启动推荐:当用户处于冷启动阶段,即系统里没有用户相关数据时,可以根据商品热门浏览量、热门购买量进行推荐
- 协同推荐:通过用户画像相关性推荐,发现可推荐的文章过少时,可考虑推荐有相似特征(如相同年龄、性别、地区)的用户所感兴趣的商品,以实现较好的推荐效果
- 推荐策略其他考虑因素:过滤噪声、惩罚热点、时间衰减、惩罚展现、考虑全局背景
(3)推荐效果监测:对推荐效果进行监测调优
- 项目业绩:功能上线后,用户留存率显著提高
2.搭建用户增长DMP平台
- 项目描述:为了更好地理解用户、优化营销策略、提升竞争力,实现可持续的用户增长,搭建DMP平台,收集、整合、管理、分析和应用来自不同业务端的数据,尤其是与消费者行为相关的数据,从而帮助企业更好地洞察用户,实现精准营销。
- 项目内容:
(1)需求分析:收集整理各业务方数据需求,抽象沉淀各业务模型,如用户、内容、渠道、活动数据模型
(2)搭建指标体系:基于不同业务场景,拆分搭建各大类的数据模型指标体系
(3)功能抽象:基于需求分析场景,构建出事件分析、漏斗分析、留存分析、用户路径分析、属性分析、用户分群功能
- 项目业绩:各业务人员实现自助取数、用数线上业务闭环
3.建立用户标签库,实现精细化分层运营
- 项目描述:缺乏全面的用户画像,运营无法对用户进行分层push/邮件营销
- 项目内容
(1)需求分析:梳理标签体系。
a.基础标签:包含性别、年龄、地区、注册信息、商品品类偏好、活跃属性、价格偏好、优惠券偏好。
b.预测标签:用户价值评估,通过提取用户多个特征,基于因子分析给特征赋权,得到用户价值评分。利用决策树模型,计算得到用户流失的临界点。
(2)标签开发:在数仓汇总层和应用层进行标签开发
(3)可视化展示:通过可视化报表展示用户标签,进行用户人群圈选,实现用户分层
- 项目业绩:运用可自主使用标签对用户进行精细化运用,目前标签使用率达到150-200次/月
4.用户评论信息价值挖掘
- 项目描述:用户商品评论内容较多,因人力与时间限制,运用人员只查看部分评论,信息收集不全面,无法真实反馈商品品质、物流、客服、品牌的意见和建议。
- 项目内容:
(1)数据预处理:导出所有用户评论数据,对数据进行清洗,利用结巴分词,对评论进行分词和词频统计,总结出用户评论关键词,归纳整理出用户评论标签体系
(2)打标:基于总结出的用户评论标签体系,采用人工打标或者机器打标的方式,对用户每条评论打上标签,最后导出标签数据进行全面分析
- 项目业绩:对商品相关指标有更深入的了解,基于现存问题找出各环节存在的不足,并解决,最终降低了客户差评率。