- 博客(49)
- 资源 (1)
- 收藏
- 关注
原创 #慧眼识模每日PK[话题]##用五种语言说爸爸我爱你[话题]#
你觉得哪个模型回答得更好?by 国家(杭州)新型交换中心。#用五种语言说爸爸我爱你。更多问题,扫码体验吧~
2024-06-13 20:36:20 247
原创 “星知荟“算力系列课程
二、算力的发展趋势三、算力网络的定义与愿景四、算力网络的目标五、算力网络的架构七、算力网络的场景八、算力网络的技术图谱九、算力基础设施关键技术——异构计算十、算力基础设施关键技术——算力原生
2024-05-17 13:13:38 313
原创 腾讯“太极”利用混部资源助力腾讯广告降本增效
近年来,大数据加大模型成为了AI领域建模的标准范式。在广告场景,大模型由于使用了更多的模型参数,利用更多的训练数据,模型具备了更强的记忆能力和泛化能力,为广告效果向上提升打开了更大的空间。但是大模型在训练过程中所需要的资源也是成倍的增长,存储以及计算上的压力怼机器学习平台都是巨大的挑战。
2024-05-16 19:05:05 661
原创 腾讯云AI超级底座新升级:训练效率提升幅度达到3倍
腾讯云存储产品总监崔剑指出,腾讯云通过提供近存储侧的一站式数据处理智能平台,为以AIGC为代表的业务提供内容处理、内容审核等服务,帮助用户挖掘数据价值,从而实现了“取之AI,助力AI”。腾讯云副总裁王亚晨在开场致辞中表示,AI大模型就像是一场F1比赛,腾讯云专门设计了星脉高性能算力网络“赛道”,并自研了TiTa和TCCL网络协议作为“车载导航和道路控制系统”,共同让“HCC GPU服务器”这台马力强大的F1赛车发挥最大的算力性能,助力客户在AI大模型的竞争中遥遥领先。基础设施再进化,取之AI,赋能于AI。
2024-05-16 16:11:04 999
原创 大模型+AI,Smartbi对话式分析再创新高度!
早在2022年发布的Smartbi V10.5版本中,就引领智能潮流,实现了AI和BI的结合,通过对话式分析实现即问即答,帮助用户智能洞察数据。而在2023年,随着的火爆,大模型以迅雷不及掩耳之势进入各界的视线。它拥有更多的参数和更丰富的训练数据,能更准确地理解和回答复杂的问题,还能够更好地理解上下文,从而生成连贯和符合语境的回答。在BI这个细分领域,就像燃油取代蒸汽,大模型的出现是一次革命,它能持续提高商业智能平台的智能性、专业性和效率。
2024-05-16 15:55:15 556
原创 腾讯云星脉获「未来网络领先创新科技成果奖」
根据测算,和传统以太网相比,星脉网络能提升40%的GPU利用率,节省30%~60%的模型训练成本,为AI大模型带来10倍通信性能提升。AIGC的爆发除了带来算力上的挑战之外,还对网络的传输和稳定提出了新的需求,传统的网络架构已经越来越满足不了大模型训练的需求。节点之间的通信需求,确保数据交换流畅、延时低,使集群通信效率达90%以上,超过传统以太网在AI场景下60%的水平。星脉网络的推出,将进一步释放AI潜能,全面提升企业大模型的训练效率,在云上加速大模型技术的迭代升级和落地应用。
2024-05-16 15:40:18 274
原创 为算力护航——腾讯星脉网络运营实践
如果把传统数据中心网络看作高速公路,那么GPU网络就是拉力赛车专用赛道。这个专用赛道承载着成千上万个计算单元的通信流量,可以说在赛场上的每辆赛车都装载着原料,而赛道上出现的任何不利因素都会严重影响着生产,譬如路面不平导致原材料倾洒丢失就需要重新运输,道路拥塞会降低生产效率,道路中断导致生产过程中断。为了使生产效率不受严重影响,除了在赛道建设过程中用质量更佳的材料提高良率外,还需要量身定制一套运营体系在减少意外导致的损失。本文将通过腾讯星脉网络运营体系中的两个系统来介绍腾讯在GPU网络领域的运营实践:a. 监
2024-05-16 15:30:10 926
原创 腾讯星脉网络解密之——GOR全链路流量规划与拥塞控制
DCN(Data Center Network)数据中心网络是现代信息技术基础设施的重要组成部分。它提供了连接与通信的基础,支撑数据中心内外部各种应用和服务。作为一个复杂的网络系统,DCN承载着大量数据流量和通信需求,为AI、大数据、云计算等关键技术提供基础底座。在传统DCN中,CPU被用作核心来处理复杂的计算任务和少量数据。然而,随着AI人工智能的迅速发展,GPU的重要性日益凸显。作为一种高度并行的硬件加速器,GPU非常适合处理AI所需的大量数据。
2024-05-16 15:13:51 1044
原创 系统网络基础知识介绍
它是在网络的使用中的最基本的通信协议。(BGP) 是 Internet 的官方路由协议,是目前唯一有效的 EGP,不过值得注意的是,有一个称为 EGP 的 EGP 协议。跨域路由是它的另一个名称,EGP 可用于连接服务提供商和大公司,由于它们位于不同的系统中,因此此过程通常更复杂且不太常见,计算机网络在其默认系统之外进行通信的要求可能会增加复杂性。从起点到通往每个目的地的路径,即管线的走向位置,是管线设计过程中的一个环节,一般由规划红线由当地市政或规划部门所确定,是管线施工的主要依据。
2024-05-13 18:27:04 557
原创 算力网络简介
在计算能力发展的基础上,通过网络手段,将计算、存储、存储等基础资源,在云、边、端之间进行有效调配的方式,以此提升业务服务质量和用户的服务体验。移动、联通、电信这类网络运营商作为网络的拥有者,就像是电商平台,阿里云、百度云、腾讯云以及各式各样的企业私有云厂家则是算力的拥有者,就像是平台的各种卖家。一边是有渠道,一边是有货源,谁需要算力,就卖给谁,产销一条龙。电信运营商完成底层平台如网络基站、网络传输的搭建,必然想在算力服务上分多些羹。
2024-05-13 16:19:40 647
原创 如何提高结构化思考
结构化思维能力的应用广泛,例如在项目管理中,可以使用结构化思维来制定项目计划、分配任务、监控进度等;在解决问题时,可以通过结构化思维来分析问题、提出假设、验证假设等;在沟通中,结构化思维有助于清晰地表达观点、梳理思路、提高沟通效率。结构化思维能力是一种逻辑思考方式,它要求人们将复杂的问题或信息分解为更小、更易于理解和管理的部分,然后按照一定的逻辑结构进行组织和分析。这种能力对于解决复杂问题、提高决策效率以及进行有效沟通都至关重要。
2024-05-11 09:53:23 250
原创 AI大模型客服机器人VS传统客服机器人
AI大模型客服机器人相较于传统客服机器人,具有更准确的语义理解、丰富的知识库、更自然的交互体验、个性化服务、自主学习和数据分析能力。传统客服机器人受限于规则和固定关键词,难以处理复杂查询和提供个性化服务。
2024-05-09 10:02:23 655
原创 对话机器人技术解说
如何不通过微调模型来提高LLM性能,检索增强生成(RAG)是未来的发展方向。Embedding:将文档的句子或单词块转换为数字向量。就向量之间的距离而言,彼此相似的句子应该很近,而不同的句子应该离得很远Vector Store:Embedding文档之后将数据存储在矢量存储中,比如ChromaDB、FAISS或Pinecone。矢量存储就像一个数据库,但顾名思义,它对矢量嵌入进行索引和存储,以实现快速检索和相似性搜索。
2024-05-09 08:35:56 668
原创 抖音APP运用的AI技术拆解
比如,用户A和用户B相似,则将用户A(或B)喜欢的短视频推荐给对方;内容识别:逐帧识别图片或视频中出现的内容,更好的理解视频信息,为视频添加标签,更好的推荐;识别视频内容:识别视频中的语音,转换成文本内容,用于后续的审核和视频分析;
2024-05-08 16:23:41 632 1
原创 多模态大模型MLLM VIT CLIP BLIP
Vit(Vision Transformer)即将Transformer应用于视觉领域。Transformer输入输出都是一个序列,若需要应用于视觉领域,则需要考虑如何将一个2d图片转化为一个1d的序列,最直观的想法将图片中的像素点输入到transformer中,模型训练中图片的大小是224*224=50176,而正常的bert的序列长度是512,复杂度太高。1.Vit在输入序列长度的改进(1)使用网络中间的特征图。
2024-05-06 10:32:47 818
原创 AI不只是技术,更是一种思维方式
可要求第三方供应商进行实现弹性伸缩,帮助团队减少成本,如此这般,产品经理才可在团队中起到提纲挈领的作用。:提升自己的综合能力,成为一名懂技术、懂设计、懂硬件、懂市场运营等知识的综合型人才。AI产品经理需要懂算法,围绕具体业务场景,熟悉相关算法。(4)算法创新:基于数据能提出算法创新、模型算法。期待在AI时代,能够抓住红利期,获得个人的成长。(1)数据摸底调研:对数据进行编目,资产化管理。(2)数据建模:对数据采集、ETL清洗进行监督。:运用新技术,发掘新需求点,探索产品创新。AI=数据+算法+算力。
2024-05-05 18:52:01 496
原创 AI+新零售的行业落地应用
传统零售线上线下数据未打通,新零售实现用户数据全打通。新零售(如盒马鲜生),用户进入盒马鲜生后,连接店内wifi后,即可获取用户mac地址,wifi探针可以获取用户诸多数据,实现自有实时数据通道。1.家具生活:智能试衣镜、智能化妆镜、健身。赋能品牌店铺、无人店铺、智能贩卖机。2.云计算:阿里云、腾讯云。4.消费电子:手环、翻译笔。3.芯片:垂直领域的芯片。
2024-05-05 18:22:45 246
原创 计算机视觉
物体探测:深度感知、OCR、物体检测、生物识别、人脸检测、物体识别、人脸识别、自动检测。人机交互:视频流语音识别、行为分析、情绪感知、模式控制、模式识别、自然交互。信息重组:增强现实、语境分类、图像标注、内容分析、视频搜索、3D制图。实践检测:位移测量、物体追踪、场景标注、视频追踪、虚拟现实。自主行为:自主运动、过程控制、导航、光学控制、感知预防。2.脸的遮挡,如眼镜、头发和头部饰品以及其他外部物体。1.人脸具有相对复杂的细节变化。一、计算机视觉全景应用图谱。
2024-05-05 17:30:22 482 1
原创 拐点——站在AI颠覆世界的前夜
但是,因为现在有各种高级的算法,AI已经非常智能了,不仅能预测一个词汇出现的频率,更能 把握词与词之间的关系,有相当不错的判断力。但是,AI最不可思议的优势是,它能发现人的理性无法理解的规律,并且据此做出判断。更致命的是,到目前为止,GPT的神经网络是纯粹的“前馈”网络,只会往前走,不会回头,没有训练,这就使得它连一般的数学算法都执行不好。什么都是别人要他做,而不是他自己要做。让专业的人做专业的事,而真正的老板可以提 prompt 和做选择,这不但是 AI时代的新风尚,也是一种理想的做事模式。
2024-05-05 14:09:28 1372 1
原创 【产品经理】业务流程和产品文档
内容说明参与者以某种方式与系统交互的人或事用例系统为其参与者所执行的有价值操作用例不是功能或特性,用例包含一个对参与者来说有完整意义的过程用例解释系统如何向利益相关者/参与者提供功能性价值用例通过使用者视角描述系统与其互动的方式,从而观测出系统实现特性:人们可以取钱 用例:取钱特性:系统可以自动选择吐钞面值组合 用例:取钱。
2024-05-04 23:13:30 220
原创 大模型预训练与微调
动作:Fine-tuning需要微调整个预训练整个预训练语言模型,且额外添加了新的参数,而Prompting则可以将整个预训练语言模型的参数保持固定,而只需要添加prompt来预测效果即可。和其他大部分高效微调方法一样,固定预训练语言模型的参数,额外增加新的参数来学习,不同的是新增的模块是一个低秩的模块,即增加低秩分解的矩阵来适配下游任务。:表示将输入的数据进行前向和后向传播的一个过程。(1)冻结部分参数:为了保持与训练模型的初始表示能力,通常会冻结部分参数,特别是底层的参数,使其在微调过程中保持不变。
2024-05-04 22:52:49 1439
原创 【产品经理】产品思维和产品意识
收益:泡沫价值(操纵/欺骗...)、感受价值(用户感受)、核心价值(用户核心需求)成本:显性成本(钱/时间/精力...)、隐性成本(替换/信任/机会/发现...)书:用户体验要素、设计中的视觉思维、web信息框架、设计心理学、交互设计目录。关键词:ux服务设计 信息架构 交互设计 视觉思维。用什么方法解决谁的什么问题。
2024-05-01 12:08:22 318
原创 智能客服项目实战
智能客服规划聚焦于用户自然语言问数、取数、分析,解决线下数据需求沟通不畅,数据产品交付慢等问题。以下将从产品方案、优化方向、应用场景挖掘三个方面进行阐述。
2024-04-28 15:09:02 859
原创 【AI绘画-1】Stable Diffusion入门指南
Stable Diffusion可以通过生成多样化、高质量的图像、修复损坏的图像、提高图像的分辨率和应用特定风格到图像上等方式,辅助视觉创意的实现。它为视觉艺术家、设计师等提供更多的创作工具和素材,促进视觉艺术领域的创新和发展。Stable Diffusion是一种基于扩散过程的图像生成模型,可以生成高质量、高分辨率的图像。这种模型具有较强的稳定性和可控性,可以生成具有多样化效果和良好视觉效果的图像。SD 保姆教程,从原理功能到案例输出展示,最后简述 ControlNet 的使用技巧。
2024-04-26 14:08:42 647
原创 【营销大模型-2】打造生成式营销平台
当前营销链路正面临重重挑战:专家级能力培养慢、个性化创意批量难、精细化运营成本高。在此背景下,基于大模型展开的自然语言理解、AIGC创意生成、多模态场景推理三大能力,助力前链路品牌广告和后链路效果运营。
2024-04-24 20:29:46 1052
原创 【营销大模型-1】智慧营销创变之旅
在新的媒介和消费环境下,新内容营销和创意过程能够对传统的基于广告思维的营销思路、逻辑、流程和做法进行调整,从而通过持续输出符合品牌调性的价值观、又让消费者或用户喜欢并且乐于互动的内容,达到促进销售的目的,理论上,新的技术能实现内容营销应用的丰富,但近几年的现状显示,包括XR、元宇宙的实际落地使用情况并不乐观,效果不佳,很难持续吸引大众关注,营销只浮于概念表面。公域流量也是私域流量的重要流量来源。但在获取大量流量的同时,其用户的精准度不高,难以实现流量的转化,并且因为竞争的存在,让流量获取成本不断提升。
2024-04-24 14:03:18 782
原创 自然语言处理的发展历程
从以上的InstructGPT的构建流程和方法介绍中可以看到,InstructGPT的构建流程相对简单,并没有涉及特别复杂的方法论和技术,也没有涉及很多原创的理论,更多的是站在巨人肩膀上的工程实践方面的创新。BERT模型诞生后,由于优秀的性能和开源的特性,其很快应用到各行各业和各类自然语言处理任务中,比如智能客服、语音质检、对话机器人和搜索引擎等,产生了巨大的商业价值。模型构建的第二步和第三步可以循环操作,只需要收集关于当前最佳策略的更多比较数据集,用于训练心得RM,然后使用PPO算法训练新的策略。
2024-04-23 20:16:46 1061
原创 【大模型应用】AI Agent企业应用助手总结
理想中的AIAgent是在丢给他一个工具包与一些知识以后,借助于大模型的理解、推理能力,完全自主进行规划与分解、设计任务步骤,并智能的使用各种工具,检索知识,输出内容,完成任务。但是在企业应用中, 由于企业知识、应用、业务需求的千差方别,以及大模型自身的不确定性, 如果这么做,那么结果很可能是“开盲盒”一样的不可控。所以要求对AI智能体的执行过程与细节进行更多的控制,来让AI按照人类确认过的工作流程来完成任务。主要的工作步骤与目标设定每个步骤使用的大模型每个步骤可以使用的工具。
2024-04-20 21:21:52 983
原创 数据中台实施方法论总结
业务调研一般分为四个步骤:制定调研计划、进行调研访谈、完成调研内容输出、输出业务蓝图并确认。基于OneModel规范下数据研发标准流程,从业务定义、数据建模、最终实现数据落地;根据业务需求变化、业务过程的变化迭代优化。快速理解客户的业务管理流程,是业务梳理的重要环节,为数据资产化和数据开发提供基础。调研业务组织架构以及组织和组织间关系,有助于我们理解业务的同时,制定相关维度。设定数据建模规范,设计总线矩阵,搭建数据模型,定义指标规范、定义维度。1.制定系统架构设计、数据上云、模型设计、标签体系设计计划。
2024-04-19 18:56:52 915 1
原创 【用户增长】用户精细化运营项目总结
用户精细化运营是一种基于用户数据和行为分析的营销策略,旨在针对不同用户群体进行个性化运营。其核心在于通过深入了解不同用户群体的需求和行为,为每个用户提供定制化的产品和服务,以提升用户体验和满意度,进而实现数字营销的效果。
2024-04-18 20:37:45 583 1
原创 【大模型应用】数据机器人
通过引入大语言模型(LLM),提升自然语言分析工具对“常识”语义和上下文语境的理解能力,让数据分析像聊天一样,通过简单的表述即可查询分析数据,并且可预置分析思路积累分析案例,引导用户进行分析。(2)实时答疑解惑:基于企业梳理的私域数据,如制度文档、规范流程等,以及平台沉淀的元数据、数据标准、数据质量、指标、数据安全等全域资产,进行实时交互问答。大模型结合现有产品与场景,将产品沉淀的管理、分析、运营等经验进行结构化梳理,交由大模型进行学习、领悟、融汇贯通。其他手工上传的行业知识、分析报告等。
2024-04-16 19:14:35 983
原创 【数据分析】用户与收入增长简介
增长黑客是一群以数据驱动营销、以市场指导产品,通过技术化手段贯彻增长目标的人。本文将介绍增长黑客常用工具箱与常用指标。
2024-04-16 18:15:21 939
原创 【大模型应用】如何写好Prompt
简单而言,大模型的运行机制是“下一个字词预测”。输入的 prompt 的质量将极大地影响模型的返回结果的质量和对用户需求的满足。优质的 prompt 千变万化,但遵循上述原则,我们总结出一个比较实用的框架,用户的 prompt 难以简单归类,需求丰富多样,总的而言,我们将用户需求将。信息查询:用户通过咨询大模型,通过 QA 获得所需信息,比如:“冰岛的首都。细分需求:也许你的需求实际上是一个复杂需求,比如“帮我写一篇关于 xx 的。等,比如:“我想创业开一家 AI 设计公司,请给我一些开公司的建议。
2024-04-12 10:19:19 732
原创 【数据中台】离线开发平台
离线开发,是一款高效的大数据离线任务开发、任务调度、数据管理工具,支持对大数据各环节处理过程进行可视化管理与控制。帮助客户提升开发效率,快速创建离线计算任务,缩短开发周期;任务管理与运维一体化,减轻繁冗的运维工作。
2023-07-22 18:00:31 352 1
原创 SQL/任务性能监控调优
(4)数开SQL任务编写完毕后,可通过预编译(不是等到任务提交运行后,等hive提供简单的报错原因),对SQL进行校验,给出详细的问题诊断与优化建议。对平台侧SQL、任务、资源、内存、性能等进行监控、预警、诊断,提供优化建议;(2)基于监控工具采集到的指标对任务报错进行诊断分析及优化建议。(3)收集项目上性能资源调优实际场景与案例,后续考虑产品化。(5)数据倾斜,自动调优,数据分布,再做sql重构。平台侧资源、内存、任务等运维指标进行监控。(1)应用普罗米修斯类监控工具,对。【监控-预警-诊断-建议】
2023-07-08 21:46:40 145
大模型应用-FastGPT产品分析
2024-04-12
(IBM)使用DataOps快速交付业务就绪数据.pdf
2023-08-18
2023金融科技趋势研究报告-恒生电子股份有限公司-2022-74页.pdf
2023-06-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人