
从零构建AI大模型:开发者实战指南
文章平均质量分 88
硬核实战派教程,助你3个月掌握大模型研发核心技能!
√ 原创避坑指南:分享模型训练中的32个致命误区与解决方案
√ 即学即用:配套GitHub开源框架,一键复现Llama、ChatGLM等主流模型
√ 持续更新:紧跟AI社区前沿,更新最新技术
现在订阅享早鸟价39.9元(原价99.9)
优惠券已抵扣
余额抵扣
还需支付
¥39.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
泰山AI
CSDN博客专家、阿里云博客专家,华为云博客专家、掘金优秀作者、开源项目累计1000+star作者,精通JAVA、python和AI智能体开发,致力于帮助开发者快速提升技术能力,解决各种技术问题!购买付费专栏的用户,如果文章对你没有解决你的问题,可以在评论区留言或者私信我,如果还能解决,可私信我退款!
展开
-
RAG 技术实战:LangChain4j 的文档处理与检索增强生成
**文章摘要**: 本文深入解析 LangChain4j 中的 RAG(检索增强生成)技术,详细阐述其核心原理与应用场景。RAG 通过检索相关信息并注入提示,显著提升 LLM 的回答准确性,减少幻觉。文章从简单 RAG、基本 RAG 到高级 RAG 的实现路径逐步展开,涵盖文档加载、嵌入存储、内容检索等关键环节,并提供 LangChain4j 的 API 使用指南。通过优化查询转换、多源检索与内容聚合,RAG 技术在问答系统、知识库检索等领域展现出强大的实用性。本文为开发者提供从入门到精通的完整实践路径原创 2025-04-15 13:53:56 · 1365 阅读 · 0 评论 -
比ollama还强大的LocalAI:解锁本地化AI模型部署教程
LocalAI 是一个致力于简化和加速人工智能模型在本地环境部署的开源项目。它允许用户在不依赖大型云端服务的情况下,利用自己的硬件资源运行复杂的机器学习模型。这为那些希望保持数据隐私、减少延迟或需要离线工作能力的应用提供了理想的解决方案。LocalAI 支持多种类型的机器学习模型,并提供了一套统一的API接口,方便开发者集成到自己的应用中。通过这种方式,它可以支持包括自然语言处理(NLP)、计算机视觉等在内的广泛应用场景。此外,LocalAI 还强调易用性和灵活性,使得即使是没有深厚机器学习背景的开发者原创 2025-04-07 17:18:20 · 1628 阅读 · 0 评论 -
PPTAgent:一款开源免费生成和评估幻灯片的项目
这篇文章介绍一下PPTAgent,一个从文档自动生成演示文稿的创新系统。该系统从人类的展示创作方法中汲取灵感,采用两步流程来确保卓越的整体质量。此外,本文还介绍了PPTEval,这是一个综合评估框架,可以跨多个维度评估演示文稿。原创 2025-04-02 17:19:55 · 1484 阅读 · 13 评论 -
集成与使用命令:Chainlit框架中的`command`命令模式实现
探索如何在Chainlit框架中高效集成命令以提升用户体验。通过定义具有唯一ID、图标、描述和显示样式的命令,开发者可以捕捉并响应用户的明确意图。例如,“Picture”命令调用DALL-E进行图像生成,“Search”用于网络搜索,“Canvas”支持协作写作和编码。利用`cl.context.emitter.set_commands`方法,您可以轻松设置这些命令,并通过简单的回调函数处理用户交互,从而构建更加互动和功能丰富的应用程序。原创 2025-03-10 20:43:48 · 370 阅读 · 0 评论 -
如何构建简单有效的AI Agents代理?
代理”可以有多种定义方式。一些客户将代理定义为完全自主的系统,这些系统可以在较长时间内独立运行,使用各种工具来完成复杂任务。另一些客户则用这个词来描述更规范的实现,即遵循预定义工作流程的系统。我们将所有这些变体都归类为代理系统,但我们在架构上对工作流程和代理工作流是通过预定义代码路径协调LLM和工具的系统。Agent代理则是LLM动态指导自身流程和工具使用,控制完成任务方式的系统。下面,我们将详细探讨这两种类型的代理系统。原创 2025-03-21 17:23:07 · 1041 阅读 · 0 评论 -
ChainLit快速接入DeepSeek实现一个深度推理的网站应用图文教程-附完整代码
DeepSeek API 使用与 OpenAI 兼容的 API 格式,通过修改配置,您可以使用 OpenAI SDK 来访问 DeepSeek API,或使用与 OpenAI API 兼容的软件。出于与OpenAI兼容考虑,您也可以将base_url设置为来使用,但注意,此处v1与模型版本无关。模型已全面升级为 DeepSeek-V3,接口不变。通过指定 model=‘deepseek-chat’ 即可调用 DeepSeek-V3。是DeepSeek最新推出的推理模型。通过指定,即可调用。原创 2025-03-21 15:46:31 · 422 阅读 · 0 评论 -
Chainlit使用mcp协议的方式使用各种llms工具图文教程
MCP为Chainlit应用程序提供了一种机制,可以连接到基于服务器发送事件(SSE)的服务或基于命令行(stdio)的工具。连接后,您的应用程序可以发现可用的工具,执行它们,并将它们的响应集成到您的应用程序流中。原创 2025-03-17 08:50:05 · 1583 阅读 · 0 评论 -
Chainlit 自定义元素开发指南:使用 JSX 和受限导入实现交互式界面
本文介绍了 Chainlit 的 `CustomElement` 类,用于渲染自定义的 `.jsx` 文件。开发者需将 `.jsx` 文件放置在 `public/elements` 文件夹中,并通过指定属性(如名称、props 和显示方式)来控制元素的渲染方式。文章强调了编写 JSX 文件的规范,包括仅使用允许的导入包(如 React、Tailwind 等)和全局注入的 `props`。同时,提供了如何通过 Python 代码更新自定义元素属性或调用函数的方法,并通过实际案例展示了如何实现一个显示 Line原创 2025-03-17 09:48:59 · 1317 阅读 · 0 评论 -
Chainlit 实现SSO单点登录CAS授权完整代码图文教程
之前写了一篇关于chanlit如何实现登录授权文章,文章以为接入授权为例,图文并茂介绍如何操作,并附带了完整代码示例。这次我们实现更有难度的事情,使用chanlit实现CAS中央用户登录授权,下面是完整教程。原创 2025-03-12 17:32:36 · 1269 阅读 · 1 评论 -
Chainlit 实现自定Oauth2.0登录完整代码图文教程
之前写了一篇关于chanlit如何实现登录授权文章其中关于OAuth授权默认支持文章中的几种平台的OAuth授权,经过我的研究,在不改动源码基础上可以扩展更多的平台OAuth授权,完整图文教程如下,以为接入授权代码示例。原创 2025-03-12 16:18:04 · 499 阅读 · 1 评论 -
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
务必确认数据持久化目录(即命令行中 -v后的目录)要跟第 (2) 步查看目录保持一致,否则启动后整个系统数据为空。(2)查看并确认上一次数据持久化目录,复制保存,第(4)步使用。(3)删除正在运行的、旧版本的。(4)启动并运行新版本的。后,可通过浏览器访问。待所有容器状态显示为。(1) 下载最新镜像。原创 2024-12-23 08:48:03 · 1002 阅读 · 0 评论 -
智能文档解析与语义分割:LlamaIndex 节点解析器模块全解
在当今数据驱动的时代,高效处理和解析文档内容成为企业与开发者关注的重点。LlamaIndex 提供的强大节点解析器模块,为这一挑战提供了创新解决方案。本文深入探讨了 LlamaIndex 的多种节点解析器功能,包括文件解析、HTML 解析、JSON 解析、Markdown 解析以及代码分割等工具,助力用户灵活应对不同格式的文本处理需求。特别值得一提的是,语义分割技术通过嵌入相似性自适应选择句子断点,确保生成的文本块具备高度语义相关性,极大提升了自然语言处理任务的效果。同时,Token 分割器和句子窗口解原创 2025-02-28 17:57:01 · 258 阅读 · 0 评论 -
FastGPT 接入飞书机器人教程(不用写一行代码)
如何通过 FastGPT V4 和 Laf 平台将智能问答功能接入飞书办公工具,实现复杂场景下的高效协作。具体步骤包括在 Laf 平台上配置函数模板、设置环境变量,以及在飞书开放平台创建企业自建应用并配置相关权限和事件订阅。此外,还涵盖了 FastGPT 的接入方法,包括获取 AppId 和 ApiKey 并完成环境变量的填写。整个流程操作简便,无需复杂的 IP 白名单设置,最终实现私聊与群聊中的流畅使用体验。本文为用户提供了从零开始的完整教程,适合希望提升团队协作效率的企业和技术爱好者参考。原创 2025-02-20 12:24:28 · 368 阅读 · 0 评论 -
Chainlit web UI的三种用户访问验证详解
Chainlit应用程序默认为公开。要启用身份验证并将您的应用程序设为私有,您需要:定义一个环境变量。这是一个用于签署身份验证令牌的秘密字符串。您可以随时更改它,但它会注销所有用户。您可以使用 轻松生成一个。使用登录名/密码验证用户。使用您自己的OAuth应用程序(如Google等)对用户进行身份验证。根据自定义标头对用户进行身份验证。每个回调接受不同的输入并可选地返回一个cl.User对象。如果回调返回None,则认为身份验证失败。确保每个用户都有一个唯一的标识符,以防止他们共享其数据。原创 2024-08-25 22:18:38 · 2032 阅读 · 0 评论 -
LlamaIndex数据检索器的相对分数融合和基于分布的分数融合
在这个例子中,我们展示了使用QueryFusionRetriever的两种方法,这两种方法旨在改进互惠秩融合(Reciprocal Rank Fusion)。互惠秩融合是一种用于合并多个排序列表的技术,特别是在信息检索领域,它通过考虑每个列表中项目的排名位置来综合不同来源的结果。QueryFusionRetriever则可能是指一种更先进的工具或算法,它实现了对查询结果进行融合的新方法,以期获得比传统互惠秩融合更好的效果。请提供更多的上下文或者具体说明您想了解的内容,以便我能为您提供更准确的翻译和解释。原创 2024-12-16 16:21:50 · 835 阅读 · 0 评论 -
MaxKB基于大语言模型和 RAG 的开源知识库问答系统开发环境搭建
MaxKB = Max Knowledge Base,是一款基于大语言模型和 RAG 的开源知识库问答系统,广泛应用于智能客服、企业内部知识库、学术研究与教育等场景。作为一款专注于知识库问答场景的软件产品,MaxKB 能够为企业的智能化进程注入新的动力,助力企业实现“提质增效”的目标。在知识库管理方面,MaxKB 帮助企业实现知识采集、知识入库、知识库构建的全流程自动化;在场景化智能搜索方面,MaxKB 能够解析用户输入的问题并匹配检索知识库;原创 2024-12-23 07:30:00 · 2277 阅读 · 0 评论 -
Llamaindex中的聊天记忆memory持久化到数据库中
之前写了一篇文章《Llamaindex中的聊天记录存储和记忆memory使用教程》 ,文章讲解了如何使用的记忆组件,本次是对上一篇文章进阶教程,本篇文章使用和结合使用,开发一个网页拥有用户聊天记忆的功能,并可以将用户的聊天记忆持久化到数据库中。LlamaIndex官方地址 https://docs.llamaindex.ai/en/stable/进入 文件夹下,执行命令创建python 虚拟环境空间(需要提前安装好。 需要。,具体操作,由于文章长度问题就不在叙述,自行百度),命令如下:这一步是避免原创 2024-12-16 15:47:41 · 2356 阅读 · 0 评论 -
LlamaIndex中的Agent代理的使用模式讲解
将查询引擎包装为代理工具也很容易。# 注意:lyft_index和uber_index都是SimpleVectorIndex实例description="提供Lyft 2021年的财务信息。"使用一个详细的纯文本问题作为工具的输入。",),),description="提供Uber 2021年的财务信息。"使用一个详细的纯文本问题作为工具的输入。",),),# 初始化ReAct代理如果您希望定义自定义代理,最简单的方法就是定义一个状态函数并用 包装它。传入和传出函数的变量state。原创 2024-10-23 13:16:07 · 908 阅读 · 1 评论 -
Llamaindex中的聊天记录存储和记忆memory使用教程
聊天存储可以通过键(如用户ID或其他唯一标识字符串)来组织一系列的聊天消息,并处理删除、插入和获取等操作。原创 2024-11-28 13:29:29 · 1583 阅读 · 0 评论 -
LlamaIndex 控制Agent代理推理循环的直接返回FunctionTool工具
控制代理推理循环的直接返回工具所有工具都有一个的选项——如果这个选项设置为True,并且关联的工具被调用(没有其他工具被调用),那么代理的推理循环将结束,并且工具的输出将直接返回。这在你知道工具的输出已经足够好时,可以用来加快响应时间,避免代理重写响应,并用于结束推理循环。本笔记本通过一个例子来介绍,在这个例子中,代理需要从用户那里收集信息以完成餐厅预订。所有工具都提供了一个选项——如果此选项设为True。原创 2024-12-03 22:46:47 · 749 阅读 · 0 评论 -
LlamaIndex框架学习-提示词的几种使用模式
由于LlamaIndex是一个多步骤管道,因此确定要修改的操作并在正确的位置传递自定义提示非常重要。例如,提示用于响应合成器、检索器、索引构建等;其中一些模块嵌套在其他模块中(合成器嵌套在查询引擎中)。有关访问/自定义提示的完整详细信息,请参阅本指南。原创 2024-10-31 15:44:12 · 752 阅读 · 0 评论 -
Chainlit集成LlamaIndex实现知识库高级检索(HyDE查询重写转换)
start函数定义了当用户开始会话时,机器人发送欢迎消息。main函数负责处理用户的输入。它接收用户的消息,调用查询引擎生成答案,并流式地发送给用户。同时,它还会显示查询所依赖的数据源。该代码展示了一个完整的问答系统的工作流程,从文档的加载、索引的创建与加载、用户请求的处理到最终的回答生成。整个过程充分考虑了性能优化,比如通过缓存机制避免重复计算,使用流式响应提升用户体验。此外,还采用了先进的技术手段如向量存储、查询转换等,以提高系统的准确性和效率。原创 2024-11-04 11:23:44 · 865 阅读 · 0 评论 -
LlamaIndex实现逐步可控的Agent代理
这个笔记本展示了如何使用我们全新的低级别代理API,该API支持的功能远不止简单地执行用户查询。它帮助你创建任务、迭代步骤,并控制每个步骤的输入。原创 2024-12-03 07:00:00 · 1535 阅读 · 0 评论 -
LlamaIndex 中 Workflows 说明书:介绍 Workflows 的所有功能
首先,我们安装我们的依赖项。Core包含我们所需的大部分内容;OpenAI用于处理LLM访问,提供了我们稍后将使用的可视化功能。设置我们的OpenAI密钥,以便我们可以做实际的LLM操作。原创 2024-10-22 11:25:58 · 1130 阅读 · 0 评论 -
llamaindex中组件chat_engine聊天引擎讲解
内有三大引擎组件分别是:从索引构建聊天引擎:与用户的数据对话:重置聊天记录以开始新的对话:进入交互式聊天 REPL:配置聊天引擎配置聊天引擎与配置查询引擎非常相似。您可以用一行代码直接从索引构建和配置聊天引擎:注意:您可以通过指定作为来访问不同的聊天引擎。注意:虽然高级 API 已针对易用性进行了优化,但它并未提供全方位的可配置性。如果需要更细粒度的控制,可以使用低级复合API。具体来说,您将显式地构造对象,而不是调用。下面是我们配置以下内容的示例:流媒体要启用流式传输,你只需要调用 接原创 2024-11-18 13:47:54 · 643 阅读 · 0 评论 -
AI大模型重塑软件开发流程:从传统模式到未来趋势的全面解析
传统软件开发流程通常遵循一系列明确的阶段,这些阶段通常被称为软件开发生命周期(SDLC)。需求分析:收集用户需求,分析系统功能和性能要求。通过文档记录需求,确保所有利益相关者达成共识。设计:根据需求文档,进行系统架构设计和详细设计。设计文档通常包括数据结构、模块划分、接口设计等。编码:开发人员根据设计文档进行编码,使用特定的编程语言实现功能。这一阶段通常需要大量的手动编码和调试。测试:对开发完成的软件进行功能测试、性能测试和安全测试等,确保软件质量。测试阶段通常需要编写测试用例和手动执行测试。部署。原创 2024-11-29 13:56:21 · 882 阅读 · 0 评论 -
AnythingLLM一个开源免费且容易搭建和使用的本地AI问答知识库助手的应用
您一直在寻找的全方位AI应用程序。与您的文档聊天,使用AI代理,高度可配置,多用户,无需繁琐的设置。👉 适用于桌面(Mac、Windows和Linux)的AnythingLLM!这是一个全栈应用程序,可以将任何文档、资源(如网址链接、音频、视频)或内容片段转换为上下文,以便任何大语言模型(LLM)在聊天期间作为参考使用。此应用程序允许您选择使用哪个LLM或向量数据库,同时支持多用户管理并设置不同权限。原创 2024-12-02 07:15:00 · 3125 阅读 · 0 评论 -
LlamaIndex响应输出解析:将生成文本解析成Pydantic对象输出
有时,您可能希望以自己的方式将输出解析为 JSON 对象。原创 2024-10-16 11:28:35 · 907 阅读 · 0 评论 -
AI赋能电商新时代:从个性化推荐到智能供应链的全面革新
综上所述,AI技术在电商行业的应用正日益深入,涵盖了从商品推荐到供应链管理、定价优化等各个方面。随着技术的不断进步,未来AI将在电商行业扮演更加重要的角色,助力平台实现更加智能化、个性化的运营管理。在未来的电商竞争中,AI的创新应用将成为平台差异化竞争的重要武器,平台将能够通过AI深入挖掘用户需求,提供更精准的商品推荐、会员服务和定价策略。电商行业的数字化转型将会加速,AI技术无疑是推动这一转型的核心驱动力。原创 2024-11-29 13:52:04 · 1066 阅读 · 0 评论 -
LlamaIndex 实现AI响应回答结果评估方法集合
LlamaIndex中的所有评估模块都实现了该类,并具有两种主要方法:1.该evaluate方法采用querycontexts和response附加关键字参数。2.该方法提供了一个替代接口,它采用 llamaindexResponse对象(包含响应字符串和源节点)而不是单独的contexts和response。它的功能与相同evaluate,只是在直接使用llamaindex对象时使用更简单。原创 2024-12-07 21:17:03 · 565 阅读 · 0 评论 -
MaxKB 开源AI知识库问答系统简介和系统架构
假设我们的数据库中有一个集合名为的集合,我们想查询出每个支架号对应的最新的一条数据,即有多少个支架就会有对应多少条最新的支架数据。我们使用Spring Data MongoDB中的来查询所有支架的最新数据,可以通过构建一个聚合查询来实现。这里假设您的集合名为,每个支架有唯一的,并且每条记录都有一个表示创建时间的字段。以下是使用实现这一功能的Java代码示例:解释定义分组操作 ():定义投影操作 ():定义排序操作 ():创建聚合操作 ():执行聚合查询:通过这种方式,您可以有效地查询所有支架的最新原创 2024-11-27 20:32:32 · 1081 阅读 · 0 评论 -
LlamaIndex 响应结果评估和rag检索结果评估教程
评估和基准测试是 LLM 开发中的关键概念。要提高 LLM 应用程序(RAG、代理)的性能,您必须有一种方法来衡量它。LlamaIndex提供关键模块来衡量生成结果的质量。我们还提供关键模块来衡量检索质量。您可以在我们的模块指南中了解有关LlamaIndex中评估工作原理的更多信息。原创 2024-12-09 10:25:02 · 373 阅读 · 0 评论 -
LlamaIndex 实现代码的跟踪和调试
调试和跟踪应用程序的运行是理解和优化应用程序的关键。LlamaIndex 提供了多种方法来执行此操作。原创 2024-12-07 20:54:58 · 307 阅读 · 0 评论 -
SpringBoot 实现启动自动检查数据库是否存在,不存在自动创建的功能
随着微服务架构的流行,越来越多的应用程序需要处理多租户或多用户的数据隔离问题。这意味着每一个新用户的加入可能都需要创建一个新的数据库以保证数据的安全性和独立性。手动创建数据库不仅耗时费力,还容易出错。因此,自动化这一过程成为了很多开发者的首选方案。我们将通过一个具体的例子,演示如何在应用程序启动时根据预设的规则自动创建数据库。这个过程涉及到SpringBoot的核心配置、数据源的管理以及数据库的动态创建等多个方面。是主数据库的名称,用于存储所有客户端的信息。是你的MySQL数据库的登录凭据。原创 2024-10-19 08:30:00 · 651 阅读 · 0 评论 -
LlamaIndex核心概念Workflows工作流代码实战教程
joke: strJokeEvent事件是用户定义的pydantic对象。您可以控制属性和任何其他辅助方法。在这种情况下,我们的工作流依赖于单个用户定义的事件JokeEvent。原创 2024-10-11 18:08:11 · 895 阅读 · 0 评论 -
LlamaIndex 中全局配置Settings的设置使用
Settings是在LlamaIndex工作流/应用程序的索引和查询阶段使用的一组常用资源。您可以使用它来设置全局配置。局部配置(转换、llm、嵌入模型)可以直接传递到使用它们的接口中。Settings是一个简单的单例对象,存在于整个应用程序中。每当没有提供特定组件时,就使用Settings对象将其作为全局默认值提供。可以在Settings。原创 2024-11-12 14:26:10 · 473 阅读 · 0 评论 -
spring boot 观察者设计模式代码实现教程
首先,我们需要创建一个自定义事件类,这个类需要继承类。} }} }} }原创 2024-11-27 13:39:41 · 628 阅读 · 0 评论 -
关于OPC UA的安全模式、安全策略和用户身份验证介绍
OPC UA(Open Platform Communications Unified Architecture)协议是现代工业自动化领域中用于数据交换和通信的重要标准。它不仅提供了标准化、安全且可扩展的数据交换机制,还特别强调了通信的安全性,确保了数据传输过程中信息的完整性和保密性。OPC UA(安全模式)、(安全策略)和(用户身份验证)。下面将对这三个概念进行详细的解析。原创 2024-11-24 17:35:11 · 1299 阅读 · 0 评论 -
Chainlit集成LlamaIndex实现一个通过用户聊天对话的酒店预定系统
通过使用Chainlit集成LlamaIndex实现,AI在和用户聊天的过程中,依据用户的对话中输入内容,提起用户的关键信息,调用创建预定信息、修改预定信息、验证预定信息、查询预定信息等方法,将用户的信息,转换成代码中预定信息对象,存到内存或数据库中,适用大多数预定场景,不止酒店预定,还可以理发预约、美容预约、按摩预约、商品预定等场景。原创 2024-12-09 18:24:20 · 1003 阅读 · 0 评论 -
LlamaIndex中高级提示技巧(变量映射、函数)
高级提示技术(变量映射、函数)在本笔记本中,我们将展示一些高级提示技术。这些特性允许您定义更多自定义/表达性的提示,重用现有的提示,并且还可以用更少的代码行来表达某些操作。原创 2024-10-24 11:46:33 · 926 阅读 · 0 评论