1累加器
使用map等函数时,可以使用驱动器程序中定义的变量,但集群中运行的每个任务都会得到这些变量的一个新的副本,更新这些副本的值也不会影响驱动器中的对应变量。spark中有两个共享变量,累加器和广播变量,可以实现集群中的共享。
累加器提供了将工作节点中的值聚合到驱动器程序中的简单语法
blacnklines= sc.accumulator(0)
final Accumulator<Integer> blankline=sc.accumulator(0);
2 广播变量
让程序高校的向所有工作节点发送一个较大的只读值。只会发送到各节点一次
声明signprefixes = sc.broadcast(loadcallsigntable())
调用signprefizex.value
3与外部程序间的管道
spark在RDD上提供pipe()方法,将RDD各元素从标准输入流中以字符串形式读出,并对这些元素执行任何你需要的操作,然后把结果以字符串形式写入标准输出
例如 编写了R脚本文件,希望在每个工作节点都能访问此R脚本,并调用它对RDD进行实际的转化操作
distscript="./src/R/finddistance.R"
distScriptName="finddistance.R"
sc.addFile(distscript) //构建一个文件李表,让每个工作节点在spark作业中下载列表中的文件,当作业中的行动操作被触发时,这些文件被各节点下载,可以通过sparkfiles.get定位找到单个文件
def hasDistInfo(call):
reuqireFields=[