spark基础四 累加器 广播变量 pipe

本文介绍了Spark中的共享变量累加器和广播变量,累加器用于在任务中聚合值到驱动器,广播变量则提供了一次性向所有工作节点发送大只读值的能力。此外,还讲解了如何利用pipe方法与外部程序交互,通过R脚本处理RDD数据。
摘要由CSDN通过智能技术生成

1累加器

使用map等函数时,可以使用驱动器程序中定义的变量,但集群中运行的每个任务都会得到这些变量的一个新的副本,更新这些副本的值也不会影响驱动器中的对应变量。spark中有两个共享变量,累加器和广播变量,可以实现集群中的共享。

累加器提供了将工作节点中的值聚合到驱动器程序中的简单语法

blacnklines= sc.accumulator(0)

final Accumulator<Integer> blankline=sc.accumulator(0);

 

2 广播变量

让程序高校的向所有工作节点发送一个较大的只读值。只会发送到各节点一次

声明signprefixes = sc.broadcast(loadcallsigntable())

调用signprefizex.value

 

3与外部程序间的管道

spark在RDD上提供pipe()方法,将RDD各元素从标准输入流中以字符串形式读出,并对这些元素执行任何你需要的操作,然后把结果以字符串形式写入标准输出

例如 编写了R脚本文件,希望在每个工作节点都能访问此R脚本,并调用它对RDD进行实际的转化操作

distscript="./src/R/finddistance.R"

distScriptName="finddistance.R"

sc.addFile(distscript)  //构建一个文件李表,让每个工作节点在spark作业中下载列表中的文件,当作业中的行动操作被触发时,这些文件被各节点下载,可以通过sparkfiles.get定位找到单个文件

def hasDistInfo(call):

   reuqireFields=[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值