- 博客(2)
- 资源 (1)
- 收藏
- 关注
原创 Lenet5参数计算详解
LeNet5 输入层:32×32 C1卷积层: 卷积核大小:5×5 卷积核种类:6 输出特征图大小:28×28 计算公式:32-5+1=28 神经元数量:28×28×6 可训练参数:(5×5+1)×6 (每个滤波器5×5=25个unit参数和一个bias参数,一共6个滤波器) 连接数:(5×5+1)×6×28×28=122304 S2池化层(下采样层): 输入:28×28 6个(C1中的特征图) 采样区域:2×2 采样方式:4个输.
2021-02-23 19:17:38
3139
原创 tf.layers.dense()参数
在这里插入代码片 tf.layers.dense( inputs, #该层的输入 units, #输出的大小(维数) activation=None, #激活函数 use_bias=True, #偏置参数,默认使用 kernel_initializer=None, #权重矩阵的初始化函数。如果为None,则使用tf.get_variable使用的默认初始化程序初始化权重 bias_initializer=tf.zeros_initializer(), #bias的初始化函数 ke
2021-02-22 10:42:08
1207
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人