LeNet5
输入层:32×32
C1卷积层:
卷积核大小:5×5
卷积核种类:6
输出特征图大小:28×28
计算公式:32-5+1=28
神经元数量:28×28×6
可训练参数:(5×5+1)×6 (每个滤波器5×5=25个unit参数和一个bias参数,一共6个滤波器)
连接数:(5×5+1)×6×28×28=122304
S2池化层(下采样层):
输入:28×28 6个(C1中的特征图)
采样区域:2×2
采样方式:4个输入相加,乘以一个可训练参数,再加上一个可训练偏置,结果通过sigmoid激活
采样种类:6
输出特征图大小:14×14 (28/2)
连接数:(2×2+1)×6×14×14=5880
C3卷积层(重点讲解):
输入:S2中6个或者几个特征图组合
卷积核大小:5×5
卷积核种类:16
输出特征图大小:10×10 (14-5+1)=10
可训练参数:6*(355+1)+6*(455+1)+3*(455+1)+1*(655+1)=1516
连接数:10×10×1516=151600
S4层池化层(下采样层):
输入:10×10
采样区域:2×2
采样方式:4个输入相加,乘以一个可训练参数,在加上一个可训练偏置。通过sigmoid激活
采样种类:16
输出特征图大小:5×5 (10/2)
神经元数量:5×5×16=400
连接数:16×(2×2+1)×5×5=2000
C5卷积层:
输入:5×5 s4的16个特征图
卷积核大小:5×5
卷积核种类:120
输出特征图大小:1×1 (5-5+1)
可训练参数/连接数:120×(16×5×5+1)=48120
F6全连接层
输入:C5卷积层120维向量
计算方式:计算输入向量和权重向量之间的点积,再加上一个偏置,结果通过sigmoid函数输出
可训练参数:84×(120+1)=10164
结点个数:84
Output层-全连接层
输入:
节点个数:10个