1 问题场景
由于COCO2017数据集具有:
- 类别多样性,有
80
个类别 - 数据集
场景丰富
- 数据集
标注多样性
,例如,在COCO2017的person类,只要出现人,无论是出现整个人,还是只出现人的脸、或只出现人的腿、或只出现人的一只脚都标注为person类
我的目的是从COCO2017数据集中提取包含指定类别的类
,例如我只想提取包含person类别,其他标注的类别都不要,如下是我从COCO2017
数据集中提取包含person
的类别,包含person类别
的数据集大概有6W多张图片
(base) shl@zhihui-mint:~/shl_res/3_data$ tree COCO2017_person/images/
COCO2017_person/images/
├── 000000000036.jpg
├── 000000000049.jpg
├── 000000000061.jpg
├── 000000000074.jpg
├── 000000000077.jpg
├── 000000000086.jpg
......
├── 000000581886.jpg
├── 000000581887.jpg
├── 000000581899.jpg
├── 000000581900.jpg
├── 000000581904.jpg
└── 000000581921.jpg
0 directories, 64113 files
(base) shl@zhihui-mint:~/shl_res/3_data$
2 使用labelImg查看COCO2017数据会出现很多目标被标注为一个框bbox
在使用labelImg
查看COCO2017数据会出现很多目标被标注为一个框bbox,如下图,他会把一群人标注为一个大的bbox
我以为是我代码转化的有问题,但是我查看了标注的person框都是没有问题的,只有当人群特别密集的时候
,才会出现把所有的人群标注一个大的bbox
,因此我确定我转化的代码应该是没有问题的。我不太明白COCO数据集这么标注的意义,我个人理解这种标注可能会造成误检
,但是我也没有实际测试过,欢迎大家讨论,或者你明白COCO数据集这么标注的原因,告知我,谢谢!
3 相关探讨
我在知乎上看到一个相关的回答,他们的讨论认为:
- 密集的人群目标比较多,也比较小,如果图片像素也比较小,
标注起来就很困难
检测也比较困难
,在检测的时候小目标本身特征就很少,检测就很困难,因此干脆就把人群检测为person,这样也能勉强接受吧!
欢迎大家继续探讨,留言