声明:
今天是第15道题。假设你正在爬楼梯,需要 n 阶你才能到达楼顶,每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?注意:给定 n 是一个正整数。以下所有代码经过楼主验证都能在LeetCode上执行成功,代码也是借鉴别人的,在文末会附上参考的博客链接,如果侵犯了博主的相关权益,请联系我删除
(手动比心ღ( ´・ᴗ・` ))
正文
题目:假设你正在爬楼梯。需要 n 阶你才能到达楼顶,每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?注意:给定 n 是一个正整数。
示例 1:
输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
解法1。这是个动态规划问题,类似于斐波那契数列,用递归的思想去理解就容易了,走到第n级的阶梯走法有2种,从第n-1级阶梯走上来,或者从第n-2级阶梯走上来,迭代公式是:,而和又可由这个迭代公式确定,自此,只需要确定边界值,,代码实现如下。
class Solution:
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n == 1:
return 1
result=[1,1] # 这里记录的是第0级和第1级阶梯的值
for i in range(2,n+1): # i从2开始,到n结束
result.append(result[i-1]+result[i-2])
return result[n]
结尾
解法1:https://blog.csdn.net/qq_35793358/article/details/77451648