关键词:数据资产评估、收益法、成本法、市场法、大数据估值、数据价值
随着数据要素市场政策持续落地,数据已被正式认定为“生产要素”,但一个关键问题随之而来:
数据到底值多少钱?如何科学评估?
2024年发布的《信息技术 大数据 数据资产价值评估(征求意见稿)》给出了国家级解法。这份标准由信息技术标准委员会主导编制,系统给出了数据资产价值评估的三大核心方法与完整操作框架。本文将带你拆解全文要点,结合实际操作视角理解“数据估值三板斧”。
🧱 数据资产估值的通用框架
标准提出了一个“先评价,后估值”的评估体系:
数据资产 → 数据评价(质量、成本、应用)→ 价值评估(收益法/成本法/市场法)
其中,数据评价三要素如下:
类型 | 要素 | 内容 |
---|---|---|
🎯 质量要素 | 准确性、一致性、完整性、时效性、可访问性 | |
💰 成本要素 | 前期费用、直接/间接成本、机会成本、税费 | |
📦 应用要素 | 使用频率、行业价值、供需关系、商业模式 |
这些评价结果将作为下一步估值的重要输入。
🧮 方法一:收益法
🔍 适合“数据可变现”的业务场景(如数据产品、数据API等)
📐 模型公式:
- P——评估值;
- Ft——数据资产未来第t个收益期的收益额;
- n——剩余收益期;
- t——未来第t年;
- r——折现率。
📌 核心逻辑:
将未来可能带来的收益,折现回今天,从而反推数据资产的价值。
🛠️ 典型预测方式:
- 直接收益预测:用于明确变现路径的API/服务数据;
- 分成收益预测:如按贡献占比分润;
- 超额收益预测:归因分析剩余利润;
- 增量收益预测:对比“有/无数据”的经营差异;
📌 提示:收益法对商业模型、预测能力要求高,适合市场化较强的企业应用。
🧱 方法二:成本法
🔍 适合内部估值、数据基础设施项目核算
📐 模型公式:
- P——评估值;
- C——重置成本;
- δ——价值调整系数。
🔍 成本要素拆解:
成本类别 | 示例 |
---|---|
前期费用 | 规划设计、咨询费 |
直接成本 | 建设、采集、清洗、存储 |
间接成本 | 软硬件、人员、运维 |
机会成本 | 由于投入该资产放弃的其他业务 |
税费 | 法定缴费 |
📌 提示:此法适合数据资产不能直接变现,但需要被“资产化入表”的项目,如政务数据平台估值。
📈 方法三:市场法
🔍 适合“类比已有交易”的估值方式,如数据交易平台上的产品
📐 模型公式:
- P——被评估数据资产价值;
- n——被评估数据资产所分解成的数据集的个数;
- Vi——参照数据资产的价值;
- Xi1——质量调整系数,根据被评估数据资产与参照数据资产的质量要素评价结果分析并确定;
- Xi2———供求调整系数,根据被评估数据资产与参照数据资产的市场规模、稀缺性和值密度综合分
析并确定; - Xi3———期日调整系数,根据被评估数据资产与参照数据资产在评估时点的相关价格指数,如居民
消费价格指数等分析并确定; - Xi4——容量调整系数,根据被评估数据资产与参照数据资产的容量分析并确定;
- Xi5——其他调整系数,根据被评估数据资产与参照数据资产的其他可量化调整因素分析并确定。
🧩 应用流程:
- 找“可比数据资产”(至少3个以上);
- 对比差异性并进行系数调整;
- 计算加权平均价值。
📌 提示:适用于有活跃数据交易市场的领域(如金融、消费、电信)。
🔐 评估保障体系:技术+平台+制度 三位一体
标准指出,为保证数据估值可信,应建立完整支撑体系:
- 📊 技术保障:评估算法、区块链存证、可信计算;
- 🖥 平台保障:工具系统化(估值工具、报告生成器);
- 📜 制度保障:评估流程、人员资质、模型验证机制;
📌 实践建议(针对数据平台/评估工具开发者)
角色 | 价值评估切入点 |
---|---|
数据服务平台 | 嵌入收益法估值引擎,支持模拟收益预测 |
政企数据管理系统 | 使用成本法快速量化存量资产 |
数据交易所 | 接入市场法估值模块,实现价格区间预警 |
SaaS工具商 | 提供估值建模服务,生成可追溯评估报告 |
🧠 结语:数据资产价值评估,将是数据“确权、入表、变现”的必由之路
未来的数据确权、估值、入表、抵押、交易全链条,离不开科学合理的估值体系。无论你是平台方、产品经理、开发者,还是评估服务商,这份标准提供了最具权威的技术支撑路径。
🔍 想看估值模型可视化流程图?留言「估值框架图」我发你一份。
📚 参考文件:
- 《信息技术 大数据 数据资产价值评估(征求意见稿)》
- GB/T 36344-2018《信息技术 数据质量评价指标》
- GB/T 38667-2020《数据分类指南》