卷积神经网络(3)卷积计算流程

本文通过实例详细解释卷积神经网络中3*3滤波器如何在7*7*3的输入图片上进行卷积计算,包括滤波器的滑动方式、内积计算以及步长的影响。内容涵盖卷积计算的基本步骤,帮助理解卷积层如何提取图像特征。
摘要由CSDN通过智能技术生成

欢迎关注博主的公众号:happyGirl的异想世界。有更多干货还有技术讨论群哦~

如图,最左边蓝色的是输入的7*7*3的图片

我们设置一个3*3的filter w0,filter的深度要跟输入一致,都是3,故我们可以看到三个filter w0

将其在7*7*3的区域里滑动,

开始的时候滑动是在图中R、G、B中圈起来的地方,

所以我们计算的第一个值:

f11=0(R中圈起来的地方和filter w0中第一个做内积)

f12=2(G中圈起来的地方和filter w0中第二个做内积)

f13=0(B中圈起来的地方和filter w0中第三个做内积)

输入为X

那么计算WX+b后我们得到:(0+2+0)+1=3,即绿色左上角的值

计算好了第一个3*3的值后

然后,窗口需要进行滑动,如图下所示,滑动多少由步长决定

图中filter有2个,即提取图像不同的特征,输出结果就是两个filter叠加在一起所得到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值