1 用于回归的损失函数-残差(Residual) |ŷ−y| | y ^ − y |
令 r=|ŷ−y| r = | y ^ − y |
(1). L1 Loss
L(r)=r=|ŷ−y| L ( r ) = r = | y ^ − y |
(2). L2 Loss
平方损失函数是线性回归在假设样本满足高斯分布的条件下推导得到的
L(r)=r2=(ŷ−y)2 L ( r ) = r 2 = ( y ^ − y ) 2
对离群点具有较高的敏感性
(3). Huber Loss (smooth L1)
损失函数:回归与分类任务中的关键

本文详细介绍了回归任务中的L1 Loss、L2 Loss和Huber Loss,以及分类任务中的0-1 Loss、Hinge Loss、Log Loss、Softmax Loss和Center Loss。这些损失函数在不同场景下有不同的应用,比如L1和L2 Loss对于异常值的敏感性,以及0-1 Loss和Hinge Loss在优化时的挑战。
最低0.47元/天 解锁文章
1282

被折叠的 条评论
为什么被折叠?



