ex2 1.2.3 Learning parameters using fminunc 采用fminunc函数能够较快获得优化后的θ。但此处我想采用梯度下降法,步长选择0.00104,步数20万,依然收敛比较慢,选择其他学习速率则会出现震荡。
代价函数J(θ)与迭代步长的关系以及最终分类结果:
最终分类结果:
θ = [ -7.617430 0.066803 0.060309 ],与答案提供的 θ = [ -25.161 0.206 0.201]还有差距。
代码如下:
%% ============= Part 3: Optimizing using fminunc =============
% In this exercise, you will use a built-in function (fminunc) to find the
% optimal parameters theta.
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 400);
%
% % Run fminunc