吴恩达机器学习ex2 logistic regression作业采用梯度下降法收敛较慢的问题

ex2 1.2.3 Learning parameters using fminunc 采用fminunc函数能够较快获得优化后的θ。但此处我想采用梯度下降法,步长选择0.00104,步数20万,依然收敛比较慢,选择其他学习速率则会出现震荡。

代价函数J(θ)与迭代步长的关系以及最终分类结果:

最终分类结果:

θ = [ -7.617430  0.066803  0.060309 ],与答案提供的 θ = [ -25.161 0.206 0.201]还有差距。

代码如下:

%% ============= Part 3: Optimizing using fminunc  =============
%  In this exercise, you will use a built-in function (fminunc) to find the
%  optimal parameters theta.

% %  Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 400);
% 
% %  Run fminunc
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值