k-means算法例题应用

简单介绍:k-means 算法是一个聚类的算法 。属于无监督学习算法,也是就样本没有label(标签),然后根据某种规则进行“分割”, 把相同的或者相近的放在一起。

算法缺点:不能帮助我们自动分类,需要指定。在很多实际应用当中,很难知道数据是什么分布的,应该分成几类比较好。这也是k-means自身的一个缺陷。

在这里K就是我们想要分割的的聚类的个数。

算法步骤

  • 先定义总共有多少个类/簇(cluster)
  • 将每个簇心(cluster centers)随机定在一个点上
  • 将每个数据点关联到最近簇中心所属的簇上
  • 对于每一个簇找到其所有关联点的中心点(取每一个点坐标的平均值)
  • 将上述点变为新的簇心
  • 不停重复,直到每个簇所拥有的点不变

例题:

  • 假设有如下8个点:(3,1),(3,2),(4,1),(4,2),(1,3),(1,4),(2,3),(2,4)。使用K-means算法对其进行聚类。设初始聚类中心分别为(0,4)和(3,3)。请写出详细的计算过程。
  • 过程如下:
  • 1 数据
    数据集
    X
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值