每天一个tenser flow小知识

本文介绍了PyTorch中张量的view方法,用于改变维度但不复制数据,以及张量的乘法操作,包括torch.bmm()和torch.matmul()。torch.bmm()适用于3D张量,强制要求维度匹配,而torch.matmul()允许不同维度间的广播机制进行矩阵乘法。这两个函数在特定条件下等效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 tensor .view()
改变维度 但是共享内存 b改变 a的值也会改变


import torch as t
a=t.arange(0,6).view(2,3)
print(a)
 
b=a.view(-1,2)  #当某一维是-1时,会自动计算它的大小
print(b)
 
#输出
tensor([[0, 1, 2],
        [3, 4, 5]])
tensor([[0, 1],
        [2, 3],

2 tensor 乘法
torch.bmm()强制规定维度和大小相同
torch.matmul()没有强制规定维度和大小,可以用利用广播机制进行不同维度的相乘操作
当进行操作的两个tensor都是3D时,两者等同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值