题目
在一个二维数组中,每一行都会按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数输入这样的一个二维数组和一个整数,判断数组中是否包含这个整数。
例子
1 | 2 | 8 | 9 |
2 | 4 | 9 | 12 |
4 | 7 | 10 | 13 |
6 | 8 | 11 | 15 |
上面就是满足要求的一个二维数组,输入整数7,返回true;输入5,返回false。
求解
#include <iostream>
#include <algorithm>
using namespace std;
//二维数组传参的方式要先定义列数
bool Find(int arr[][4],int rows,int number){
bool isflag = false;
int row = rows-1;
int col = 0;
while(row>=0 && col<=3 ){ //从矩阵最左下角往右上排除,直到超过矩阵范围(右上角是arr[0][3])
if(arr[row][col] > number ){
row -= 1;//左下角的数比number大的话,说明要查的数不可能的该数右边,所以排除这一行
}else if(arr[row][col] < number){
col += 1; //要查的数不可能在该数上边,排除这一列
}else{
isflag = true;
break;
}
}
return isflag;
}
int main(){
int arr[4][4] = {{1,2,8,9},{2,4,9,12},{4,7,10,12},{6,8,11,15}};
int row = 3,col = 0;
int number = 5;//这里是要查找的整数
if(Find(arr,4,number)) cout<<"true";
else cout<<"false";
return 0;
}
二维数组传参的时候,要注意要定义列数。算法是根据每次排查二维数组的左下角的元素,如果要查的整数小于它,根据矩阵从左向右递增的规律,它右边的数只会更大,要查的数会依旧小于它们,所以果断排除这一行;如果要查的整数大于它,同理可以排除这一列。按照这样的规律,把原先的二维数组不断缩小排查范围,最后要么查到一个元素等于整数,要么超过数组的边界,达到查找的目的。