- 博客(197)
- 收藏
- 关注
原创 强化学习 需要样本数据吗 ? 怎么用这些数据 demo
强化学习确实需要样本数据,这些数据在训练过程中起着至关重要的作用。以下是关于强化学习如何使用样本数据的详细解释,以及一个具体的demo示例。
2024-12-10 20:32:36
2004
原创 多传感器融合与多模态的区别
多传感器融合定义:多传感器融合(Multi-sensor Fusion, MSF)是利用计算机技术,将来自多个传感器或多源的信息和数据,以一定的准则进行自动分析和综合,以完成所需的决策和估计而进行的信息处理过程。范畴:它主要关注于如何有效地整合来自不同传感器(如有源或无源传感器)的数据,以提高系统的感知、决策和估计能力。多模态定义:多模态(Multimodality)是一个涉及多个领域和层面的概念,主要指的是同时使用两种或多种感官(如视觉、听觉、触觉、嗅觉等)进行信息交互的方式。
2024-12-10 20:32:14
1880
原创 强化学习的详细解释及demo
这个模型可能是一个简单的策略表(在离散状态和动作空间中),也可能是一个复杂的神经网络(在连续状态或动作空间中)。在强化学习中,智能体通过与环境的交互来学习。环境的状态可以表示为智能体当前的位置,动作可以表示为向左或向右移动,奖励只有在到达目标位置时才给出(奖励为1),其他情况下奖励为0。强化学习是一种机器学习方法,它使智能体(Agent)能够在环境中通过试错的方式学习最优策略,以最大化其从环境中获得的累积奖励。请注意,这个示例代码仅用于说明如何加载一个神经网络模型,并且假设你的模型是一个简单的全连接网络。
2024-12-09 14:53:53
1126
原创 svm的形象理解
SVM的实现过程涉及多个关键步骤和概念,包括定义超平面、确定支持向量、最大化间隔、求解优化问题以及得到分类决策函数等。对于线性不可分的情况,SVM通过引入核函数将输入空间中的非线性问题转化为高维特征空间中的线性问题。此外,SVM还可以通过引入松弛变量和软间隔来处理近似线性可分的情况。这些技术和方法使得SVM在分类和回归分析等领域中具有广泛的应用和强大的性能。
2024-12-08 20:47:01
717
原创 大模型都是transformer架构吗
关于“大模型都是transformer吗”这一问题,可以明确的是,目前业界的大部分大模型确实采用了transformer架构。
2024-12-08 20:43:33
793
原创 CNN RNN Transform 的主要区别
CNN(卷积神经网络)、RNN(循环神经网络)和Transformer是深度学习中的三种重要网络结构,它们在模型结构、特征表示能力、训练效率和应用场景等方面存在显著区别。
2024-12-08 20:38:02
805
原创 大模型与普通深度学习模型的主要区别
大模型与普通深度学习模型的主要区别体现在多个方面,包括规模与复杂性、训练数据、计算能力需求、应用场景以及涌现能力等。
2024-12-08 20:37:33
1265
原创 无监督学习怎样学习的? 需要提前训练吗?
无监督学习是机器学习中的一种重要方法,它侧重于对未标记的数据进行分析和学习,从中提取出有意义的信息或模式。
2024-12-08 20:20:16
779
原创 大模型的微调方法有哪些
大模型微调(Fine-tuning)是在已经预训练好的大型深度学习模型基础上,使用新的、特定任务相关的数据集对模型进行进一步训练的过程。这种微调技术的主要目的是使模型能够适应新的、具体的任务或领域,而无需从头开始训练一个全新的模型。
2024-12-08 20:18:49
740
原创 slam 回环检测与约束 是怎样起作用的
回环检测与约束在SLAM系统中起着至关重要的作用。它们通过检测重复访问的位置、修正累积误差、引入位姿和几何约束等手段,提高了地图构建的准确性和一致性。在实际应用中,需要根据具体场景和需求选择合适的回环检测方法和优化算法,以实现最佳的SLAM效果。
2024-11-29 17:21:54
592
原创 人脸关键点检测算法有哪些
需要注意的是,虽然传统算法在人脸关键点检测方面取得了一定的成果,但与现代深度学习算法相比,它们在处理复杂背景和遮挡情况下的性能可能相对较弱。随着深度学习技术的不断发展,越来越多的研究者开始将深度学习算法应用于人脸关键点检测领域,并取得了显著的效果。人脸关键点检测的深度学习算法多种多样,每种算法都有其独特的优势和适用场景。在实际应用中,可以根据具体需求和资源条件选择合适的算法进行人脸关键点检测。
2024-11-29 17:15:16
893
原创 orb slam3 代码详细解析
ORB-SLAM3 是一个开源的视觉 SLAM(Simultaneous Localization and Mapping,即同时定位与地图构建)系统,它支持单目、双目和RGB-D相机,并能够在室内和室外环境中进行准确的实时定位和地图构建。ORB-SLAM3 是 ORB-SLAM 和 ORB-SLAM2 的继承者,引入了多项改进和新功能。以下是对 ORB-SLAM3 代码的一个详细解析框架,旨在帮助你理解其关键组件和工作流程。但请注意,由于篇幅限制,这里无法提供完整的代码细节,而是概述主要部分和流程。
2024-11-29 17:14:49
731
原创 vgg 详细说明
综上所述,VGG模型是一个经典的深度卷积神经网络模型,其简单统一的网络结构和深度的网络层次使得它在图像分类等任务上取得了优秀的性能。然而,其参数较多和计算量大的局限性也限制了其在某些场景中的应用。VGG模型在深度学习领域具有重要地位,为后续的卷积神经网络模型提供了重要的参考和借鉴。例如,ResNet、Inception等更先进的模型架构都在一定程度上受到了VGG模型的影响。:在每个卷积层序列之后使用2x2的最大池化层,以减少特征图的尺寸并增加特征的局部性。:通常接受224x224大小的RGB图像。
2024-11-29 15:27:57
1167
原创 orb 特征描述子 的形象理解
ORB(Oriented FAST and Rotated BRIEF)特征描述子是一种用于图像特征描述的算法,它结合了FAST特征点检测和BRIEF特征描述,以实现高效且具有旋转不变性的特征提取和匹配。
2024-11-24 19:36:51
1146
原创 图像增强有哪些
图像增强是数字图像处理中常用的技术之一,旨在改善图像的视觉效果,提高图像的质量,使目标更容易被感知和识别。根据增强处理过程所在的空间不同,图像增强方法可分为基于空域的方法和基于频域的方法。
2024-11-24 11:22:44
628
原创 Dropout技术
例如,对于某一层网络,Dropout一些单元后,形成的结果是(1.5, 0, 2.5, 0, 1, 2, 0),其中0是被Drop的单元,那么总能找到一个样本,使得到结果也是如此。这样,每次训练相当于使用了一个子网络,从而减少了神经元之间的复杂共适应性13。对于一个有N个节点的神经网络,有了Dropout后,可以看作是2^N个模型的集合,但此时要训练的参数数目却是不变的,解决了费时的问题12。:通过Dropout,可以消除那些依赖于固定关系的隐含节点的共同效应,从而减少过拟合的风险3。
2024-11-24 10:36:38
186
原创 AlexNet、VGG、ResNet的区别与联系
lexNet、VGG、ResNet都是深度学习中用于图像识别的卷积神经网络架构,它们之间既存在区别也有联系。
2024-11-24 10:36:27
833
原创 深度学习正则化
正则化是通过在损失函数中添加一个正则化项来防止模型过拟合。过拟合是指模型在训练集上表现很好,但在测试集上表现较差的现象。正则化通过惩罚复杂的模型来避免这种情况,使得模型在训练集和测试集上都能有较好的表现12。
2024-11-24 10:36:14
872
原创 Transform深度学习的理解
在深度学习中,Transform(特指Transformer模型)是一种基于自注意力机制的深度学习架构,具有强大的序列处理能力。
2024-11-24 10:36:01
1362
原创 深度学习残差应该怎么理解
残差在数学、统计学以及机器学习等领域中有着不同的含义,但通常指的是一个数学模型或统计估计中的误差部分,即实际观测值与模型预测值之间的差异。在深度学习中,特别是在残差网络(Residual Networks,ResNet)中,残差具有特定的含义。它指的是在神经网络中引入的跳跃连接(Skip Connections)允许直接将前面层的输出加到后面层的输出上,这样的结构可以帮助网络学习到残差映射,而不是原始的映射。
2024-11-24 10:35:46
624
原创 Transform在深度学习demo
使用transforms模块定义图像预处理流程,包括调整图像大小、随机水平翻转、转换为tensor格式以及标准化等步骤。python复制代码transforms.RandomResizedCrop(224), # 随机裁剪并调整大小为224x224像素transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(), # 转换为tensor格式。
2024-11-24 10:35:36
305
原创 点云构建三维物理表面的算法
需要注意的是,不同的算法适用于不同的场景和数据集。在实际应用中,需要根据具体需求和数据特点选择合适的算法,并进行相应的参数调整和优化。点云构建三维物理表面的算法多种多样,这些算法在计算机视觉、图形学和计算几何学中有着广泛的应用。
2024-11-24 10:35:25
451
原创 图像分割与语义分割
图像分割定义:图像分割是指将图像划分为多个部分或区域的过程,这些区域通常是由相似像素组成的,而这些像素具有相似的颜色、亮度、纹理或形状等特征。目的:图像分割的主要目标是识别和区分图像中的不同部分,为后续的对象识别、图像识别等任务提供有用的信息。语义分割定义:语义分割是指将图像中的每个像素点分配到其对应的语义类别,从而得到图像的语义标注。目的:语义分割的主要目标是识别和区分图像中的对象及其类别,为后续的对象识别、场景理解等任务提供更为精细的信息。
2024-11-24 10:33:11
667
原创 图像关节点的识别算法
需要注意的是,不同的算法在性能、准确性和计算效率方面存在差异。因此,在选择合适的算法时,需要根据具体的应用场景和需求进行权衡。同时,随着技术的不断发展,新的算法和模型也在不断涌现,为图像关节点识别提供了更多的选择和可能性。图像关节点识别,尤其是在人体行为识别或姿态估计中,是一个关键任务。这类算法旨在从图像或视频中识别出人体的关节点,如肩膀、肘部、膝盖等,从而进一步分析人体的姿态或行为。
2024-11-24 10:33:00
527
原创 全卷积网络(FCN)
FCN由Jonathan Long等人在2015年提出,是首个端对端的针对像素级预测的全卷积网络。FCN将传统卷积神经网络(CNN)中的全连接层替换为卷积层,从而实现了任意尺寸图像的输入和输出,并保持输出图像的空间尺寸与输入图像一致。这一变革使得FCN能够直接应用于像素级的分类任务,即语义分割。
2024-11-24 10:32:17
565
原创 fast 特征描述子
FAST(Features from Accelerated Segment Test)特征描述子是一种用于高速特征点检测的算法,其核心思想是基于像素亮度差异来检测角点。
2024-11-24 10:29:59
448
原创 二叉树、八叉树(Octree)和KD树
二叉树、八叉树(Octree)和KD树(K-Dimensional Tree, KD-Tree)都是树形数据结构,它们在数据存储、检索和查询方面有着广泛的应用。二叉树、八叉树和KD树都是重要的数据结构,它们在各自的应用领域中发挥着重要的作用。通过递归地将空间分割成两部分来构建,分割是通过在每个维度上交替选择一个维度,并在这个维度上选择一个分割点来完成的。KD树是一种特殊的二叉树,但每个节点代表一个k维空间中的点,适用于任意维度的空间。KD树通过交替选择维度和分割点来保持树的平衡性,从而支持高效的查询操作。
2024-11-24 10:29:32
482
原创 图像分割的解释
定义:图像分割是数字图像处理中的一项基本技术,它将图像划分为若干互不相交的区域,每个区域内的像素在某种特征(如灰度、颜色、纹理等)上具有相似性。目的:图像分割的主要目的是将图像中的目标从背景中分离出来,以便于后续的分析、处理或识别。Mask R-CNN是Faster R-CNN的扩展,在有效检测目标的同时能够输出高质量的实例分割掩码。它结合了特征金字塔网络(FPN)和强大的骨干网络(如ResNet101),能够高效地进行物体检测和实例分割。
2024-11-23 20:53:26
1231
原创 目标检测深度学习的形象理解
目标检测是深度学习中的一个重要应用领域,旨在从图像或视频中识别并定位感兴趣的对象。为了形象地理解目标检测深度学习,我们可以将其比作一个“智能侦探”的过程。
2024-11-23 18:55:25
427
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人