【牛客网】埃森哲杯第十六届上海大学程序设计联赛春季赛暨上海高校金马五校赛 L.K序列 (背包式滚动dp+模运算)

2 篇文章 0 订阅

题目链接

(背包式滚动dp+模运算)

题意:给一个数组 a,长度为 n,若某个子序列中的和为 K 的倍数,那么这个序列被称为“K 序列”。现在要你 对数组 a 求出最长的子序列的长度,满足这个序列是 K 序列。 

题解:考虑到是子序列可以不连续,所以不能直接记录前缀和维护双指针做(子串做法)(即使这次题目数据太水,比赛中很多人当作子串暴力过了)不过我这里还是讲解正规做法。

首先可以先取走数组中被k整除的数,其余的数也都先%k,这样得到的数据都是k的范围内,对于题目数据很明显就是在暗示背包,然后就是剩下来的数进行模运算式的滚动背包了。

转换方程:dp[x ^ 1][(j + a[i]) % mod] = max(dp[x ^ 1][(j + a[i]) % mod], dp[x][j] + 1);
具体看代码~不好解释哈

代码如下:

#include<iostream>  
#include<cstring>  
#include<string>  
#include<cstdio>  
#include<cmath>  
#include<vector>  
#include<queue>  
#include<map>  
#include<algorithm>  
using namespace std;
#define inf 0x3f3f3f3f  
#define ll long long  
const int maxn = 1e7 + 50;
int dp[2][maxn], a[maxn];
int main()
{
	int n, mod, xx, ans = 0, cnt = 0;
	cin >> n >> mod;
	for (int i = 0; i < n; i++)
	{
		scanf("%d", &xx);
		if (xx%mod == 0)ans++;
		else a[cnt++] = xx%mod;
	}
	int x = 0;
	for (int i = 0; i < cnt; i++)
	{
		for (int j = 0; j < mod; j++)
			if (j == 0 || dp[x][j])
				dp[x ^ 1][(j + a[i]) % mod] = max(dp[x ^ 1][(j + a[i]) % mod], dp[x][j] + 1);
		x ^= 1;
	}
	cout << ans + dp[x][0] << endl;
	return 0;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值