One-Hot Encoding
目录:
- One-Hot Encoding是什么;
- 为什么我们需要使用One-Hot Encoding;
- 什么时候需要使用到One-Hot Encoding;
一、我们为什么使用 One-Hot Encoding?
在我们获得数据的时候,比如,我想知道一个女生,最喜欢的口红Top3,她会回答我,比如:Mac, 3CE, Dior(这些都是categorical 变量)
我想用机器学习预测,口红的销量。显然,我不能将Mac,3CE这些口红名字直接拿给机器学习,因为机器不能知道他们的含义
接下来,我便需要用到One-Hot Encoding
二、One-Hot Encoding的本质是什么?
One-Hot Encoding就是将一组categorical变量,转化为一组binary的变量,如下图
Reference:
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding