One-Hot Encoding

One-Hot Encoding

目录:

  1. One-Hot Encoding是什么;
  2. 为什么我们需要使用One-Hot Encoding;
  3. 什么时候需要使用到One-Hot Encoding;

一、我们为什么使用 One-Hot Encoding?

在我们获得数据的时候,比如,我想知道一个女生,最喜欢的口红Top3,她会回答我,比如:Mac, 3CE, Dior(这些都是categorical 变量)

我想用机器学习预测,口红的销量。显然,我不能将Mac,3CE这些口红名字直接拿给机器学习,因为机器不能知道他们的含义
接下来,我便需要用到One-Hot Encoding

二、One-Hot Encoding的本质是什么?

One-Hot Encoding就是将一组categorical变量,转化为一组binary的变量,如下图
在这里插入图片描述
Reference:
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值