滑稽树上滑稽果题解

题意描述

n个不同的滑稽果中,每个滑稽果可取可不取,从所有方案数中选取一种,求选取的方案中滑稽果个数不超过m的概率。(对109+7取模)

输入描述

第一行一个正整数T( T <= 10^5 )
随后T行每行两个整数n,m ( 0 < m <= n <= 10^5 )

输出描述

T行,每行一个整数表示答案。

样例输入

2
5 2
5 1

样例输出

500000004
687500005

解题思路

本题是离线问题,又涉及到区间。我们可以考虑是否能用莫队算法在 O ( N N ) O(N\sqrt{N}) O(NN )时间内解决。而能否用莫队算法的关键在于区间是否能单位转移,以及单位转移是否为常数时间。
首先我们知道该题的答案是 T = ∑ i = 1 m C ( n , i ) / 2 n T = \sum_{i = 1}^{m}{C(n,i)}/2^n T=i=1mC(n,i)/2n,其中C(n,r)是组合数,当然我们还需要对P(1e9+7)取模。为了简便起见我们设 S ( n , m ) = ∑ i = 1 m C ( n , i ) S(n,m) = \sum_{i = 1}^{m}C(n,i) S(n,m)=i=1mC(n,i),那么我们需要考察的是S(n,m)是否能转移到S(n,m+1)、S(n,m-1)、S(n-1,m)、S(n+1,m)。通过对S的展开,以及对组合数公式的运用,我们得出如下转移方程:

S(n,m-1) = S(n,m) - C(n,m)
S(n,m+1) = S(n,m) + C(n,m)
S(n+1,m) = 2 * S(n,m) - C(n,m)
S(n-1,m) = [S(n,m) + C(n-1,m)]/2

通过逆元 [ 1 ] ^{[1]} [1]的知识,我们可以在常数时间内求出C(n,m),于是乎我们发现该题可以采用莫队算法解决。当然上述状态转移时需要注意可能会出现负数取模情况,要处理一下。于是我们最终答案就是S(n,m)/2^n,将上述所有除法转化为模P下的逆元即可。

代码示例
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int P = 1e9+7;
int len = 0;	//请尽早初始化 
const int N = 1e5+10;
const int Q = N;
typedef long long ll;
ll ans = 2;		//Cnr(1,0) + Cnr(1,1) = 2
ll lastAns[Q];	//用来存放最终答案 
struct Query{
	int l,r,id,block;
	Query(){}
	Query(int l,int r,int id):l(l),r(r),id(id){
		block = l/len;
	}
	bool operator < (const Query & B) const{
		if(block == B.block) return block&1 ? r < B.r : r > B.r;
		return block < B.block;
	}
}querys[Q];

ll Finv[N],F[N],F2[N];//F存阶乘,Finv存对应逆元,F2[i]为2^i的逆元 
ll Qpow(ll x,ll p,ll m){ 
	ll res = 1;
	while(p){
		if(p&1)	res =res*x%m;
		x = x*x%m;
		p >>= 1;
	}
	return res;
}
//求阶乘的逆元、2^i的逆元,使得Cnr复杂度为O(1) 
void Init(){
	F2[0] = F[0] = 1;
	for(ll i = 1;i < N;i++)
		F[i] = F[i-1]*i%P; 
	Finv[N-1] = Qpow(F[N-1],P-2,P);
	for(int i = N-1;i > 0;i--)
		Finv[i-1] = Finv[i]*i%P;
	for(int i = 1;i < N;i++)
		F2[i] = F2[i-1]*2%P;
	for(int i = 1;i < N;i++)
		F2[i] = Qpow(F2[i],P-2,P);
}
//返回组合数C(n,m)%P的值 
ll Cnr(int n,int m){ 
	if(n < m) return 0;
	return F[n]*Finv[n-m]%P*Finv[m]%P;
}
int main(){
	int n,m,t;		 
	Init();			//求逆元 
	len = sqrt(N);	//初始化块长度 
	scanf("%d",&t);
	for(int i = 1;i <= t;i++){
		scanf("%d%d",&n,&m);	 
		querys[i] = Query(m,n,i);
		//m比n小,放在前面速度快一些 
	}
	sort(querys+1,querys+t+1);
	int l = 1,r = 1;
	for(int i = 1;i <= t;i++){
		Query &x = querys[i];	//结构体引用,便于书写 
		while(l < x.l) ans = (ans+Cnr(r,l+1))%P,l++;
		while(l > x.l) ans = (ans-Cnr(r,l)+P)%P,l--;
		while(r < x.r) ans = (2*ans-Cnr(r,l)+P)%P,r++;
		while(r > x.r) ans = (ans+Cnr(r-1,l))*F2[1]%P,r--;
		lastAns[x.id] = ans*F2[r]%P;//不要忘了还要乘2^n的逆元呢 
	}
	for(int i = 1;i <= t;i++) printf("%lld\n",lastAns[i]);
	return 0;
}
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迷亭1213

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值