RCNN

转载自:https://blog.csdn.net/u014380165/article/details/72851035

论文:Rich feature hierarchies for accurate object detection and semantic segmentation

链接:https://www.cv-foundation.org/openaccess/content_cvpr_2014/pape

新年也结束的七七八八了,这里开始记录自己找工作的一年。这是一篇比较早的Object Detection算法,发表在2014年的CVPR


一、解决的问题


本文主要讲R-CNN(Regions with CNN features)这个算法,该算法是用来做object detection的经典算法,2014年提出。object detection的问题简单讲就是两方面:localization和recognition,即知道object在哪,以及这个object是什么。

R-CNN在pascal VOC 2012数据集上取得了mAP 53.3%的成绩,在当时已经很不错了。

 

二、算法简述


本文数据集采用pascal VOC,这个数据集的object一共有20个类别。首先用select search方法在每张图像上选取约2000个region proposal,region proposal就是object有可能出现的位置。然后根据这些region proposal构造训练和测试样本,注意这些region proposal的大小不一,另外样本的类别是21个(包括了背景)。然后是预训练,即在ImageNet数据集下,用AlexNet进行训练。然后再在我们的数据集上fine-tuning,网络结构不变(除了最后一层输出由1000改为21),输入是前面的region proposal进行尺寸变换到一个统一尺寸227*227,保留f7的输出特征2000*4096维。针对每个类别(一共20类)训练一个SVM分类器,以f7层的输出作为输入,训练SVM的权重4096*20维,所以测试时候会得到2000*20的得分输出,且测试的时候会对这个得分输出做NMS(non-maximun suppression),简单讲就是去掉重复框的过程。同时针对每个类别(一共20类)训练一个回归器,输入是pool5的特征和每个样本对的坐标即长宽。
 

三、算法详解

RCNN算法分为4个步骤 :
- 一张图像生成1K~2K个候选区域 
- 对每个候选区域,使用深度网络提取特征 
- 特征送入每一类的SVM 分类器,判别是否属于该类 
- 使用回归器精细修正候选框位置

 

训练过程:

1、准备region proposal。对于训练集中的所有图像,采用selective search方式来获取,最后每个图像得到2000个region proposal。

2、准备正负样本。如果某个region proposal和当前图像上的所有ground truth中重叠面积最大的那个的IOU大于等于0.5,则该region proposal作为这个ground truth类别的正样本,否则作为负样本。另外正样本还包括了Ground Truth。因为VOC一共包含20个类别,所以这里region proposal的类别为20+1=21类,1表示背景。简单说下IOU的概念,IOU是计算矩形框A、B的重合度的公式:IOU=(A∩B)/(A∪B),重合度越大,说明二者越相近

3、预训练。这一步主要是因为检测问题中带标签的样本数据量比较少,难以进行大规模训练。采用的是Krizhevsky在2012年的著名网络AlexNet来学习特征,包含5个卷积层和2个全连接层,在Caffe框架下利用ILSVRC 2012的数据集进行预训练,其实就是利用大数据集训练一个分类器,这个ILSVRC 2012数据集就是著名的ImageNet比赛的数据集,也是彩色图像分类

4、fine-tuning。将2中得到的样本进行尺寸变换,使得大小一致,这是由于2中得到的region proposal大小不一,所以需要将region proposal变形成227*227。本文中对所有不管什么样大小和横纵比的region proposal都直接拉伸到固定尺寸。然后作为3中预训练好的网络的输入,继续训练网络,继续训练其实就是迁移学习。另外由于ILSVRC 2012是一个1000类的数据集,而本文的数据集是21类(包括20个VOC类别和一个背景类别),迁移的时候要做修改,将最后一个全连接层的输出由1000改成21,其他结构不变。训练结束后保存f7的特征。

5、针对每个类别训练一个SVM的二分类器。输入是f7的特征,f7的输出维度是2000*4096,输出的是是否属于该类别,训练结果是得到SVM的权重矩阵W,W的维度是4096*20。这里负样本的选定和前面的有所不同,将IOU的阈值从0.5改成0.3,即IOU<0.3的是负样本,正样本是Ground Truth。IOU的阈值选择和前面fine-tuning不一样,这里链接3的解释是:前面fine-tuning需要大量的样本,所以设置成0.5会比较宽松。而在SVM阶段是由于SVM适用于小样本,所以设置0.3会更严格一点。

6、回归。用pool5的特征6*6*256维和bounding box的ground truth来训练回归,每种类型的回归器单独训练。输入是pool5的特征,以及每个样本对的坐标和长宽值。另外只对那些跟ground truth的IOU超过某个阈值且IOU最大的proposal回归,其余的region proposal不参与。详细说一下:对于某个region proposal:R,以及其对应的Ground truth:G,我们希望预测结果是:P,那么我们肯定希望P尽可能接近G。这里通过对pool5层的特征X做线性变换WX得到变换函数F(X),这些变换函数作用于R的坐标达到回归的作用(包括对x,y的平移以及对w,h的缩放)。因此损失函数可以表达为:R和G的差距减去P和G的差距要尽可能小。

 

测试过程:

1、输入一张图像,利用selective search得到2000个region proposal。

2、对所有region proposal变换到固定尺寸并作为已训练好的CNN网络的输入,得到f7层的4096维特征,所以f7层的输出是2000*4096。

3、对每个类别,采用已训练好的这个类别的svm分类器对提取到的特征打分,所以SVM的weight matrix是4096*N,N是类别数,这里一共有20个SVM,N=20注意不是21。得分矩阵是2000*20,表示每个region proposal属于某一类的得分。

4、采用non-maximun suppression(NMS)对得分矩阵中的每一列中的region proposal进行剔除,就是去掉重复率比较高的几个region proposal,得到该列中得分最高的几个region proposal。NMS的意思是:举个例子,对于2000*20中的某一列得分,找到分数最高的一个region proposal,然后只要该列中其他region proposal和分数最高的IOU超过某一个阈值,则剔除该region proposal。这一轮剔除完后,再从剩下的region proposal找到分数最高的,然后计算别的region proposal和该分数最高的IOU是否超过阈值,超过的继续剔除,直到没有剩下region proposal。对每一列都这样操作,这样最终每一列(即每个类别)都可以得到一些region proposal。

5、用N=20个回归器对第4步得到的20个类别的region proposal进行回归,要用到pool5层的特征。pool5特征的权重W是在训练阶段的结果,测试的时候直接用。最后得到每个类别的修正后的bounding box。
 

缺点
R-CNN流程较多,包括region proposal的选取,训练卷积神经网络(softmax classifier,log loss),训练SVM(hinge loss)和训练 regressor(squared loss),这使得训练时间非常长(84小时),占用磁盘空间也大。在训练卷积神经网络的过程中对每个region proposal都要计算卷积,这其中重复的太多不必要的计算,试想一张图像可以得到2000多个region proposal,大部分都有重叠,因此基于region proposal卷积的计算量太大,而这也正是之后Fast R-CNN主要解决的问题,留在下一篇博客讲解。

 

参考资料:http://blog.csdn.net/shenxiaolu1984/article/details/51066975 
http://www.robots.ox.ac.uk/~tvg/publications/talks/fast-rcnn-slides.pdf 
http://www.jianshu.com/p/deb0f69f5597 
http://blog.csdn.net/WoPawn/article/details/52133338


补充:

Hard negative mining.参考知乎:https://www.zhihu.com/question/46292829

1.在bootstrapping方法中,我们先用初始的正负样本(一般是正样本+与正样本同规模的负样本的一个子集)训练分类器,然后再用训练出的分类器对样本进行分类,把其中错误分类的那些样本(hard negative)放入负样本集合,再继续训练分类器,如此反复,直到达到停止条件(比如分类器性能不再提升).

2.首先是negative,即负样本,其次是hard,说明是困难样本,也就是说在对负样本分类时候,loss比较大(label与prediction相差较大)的那些样本,也可以说是容易将负样本看成正样本的那些样本,例如roi里没有物体,全是背景,这时候分类器很容易正确分类成背景,这个就叫easy negative;如果roi里有二分之一个物体,标签仍是负样本,这时候分类器就容易把他看成正样本,这时候就是had negative。
hard negative mining就是多找一些hard negative加入负样本集,进行训练,这样会比easy negative组成的负样本集效果更好。主要体现在虚警率更低一些(也就是false positive少)。

 

3.hard negative mining的实现贯穿于网络的训练过程,简单来说有以下三个步骤

a.目标检测中如何根据有标签的数据划分正负训练集?
用带标签的图像随机生成图像块,iou大于某一个阈值的图像块做为正样本,否则为负样本。但一般负样本远远多于正样本,为避免训练出来的模型会偏向预测为负例,需要保持样本均衡,所以初始负样本训练集需要选择负样本集的子集,一般正:负=1:3。
b.有了正负训练集集就可以训练神经网络了。经过一轮训练,就可以用这个训练出的模型预测其余的负样本了(就是没有加入训练集的那些负样本)。模型在预测一张图像块后会给出其属于正负的概率,在这里设置一个阈值,预测为正的概率大于这个阈值,就可以把这个图像块加入负样本训练集了。
c.正样本训练集不变,负样本训练集除了初始的那些,还有新加入的。拿着这个新的训练集,就可以开始新的一轮训练了。

 

4.当负例远多于正例时, 是预测结果偏向越负例. 所以可能有很多正例被模型预测为负例, 即False Negative(被模型预测为负的正样本)比较多.

我们先验的认为 IOU 在[0, 0.1)之内的是 easy example, 但是, [0, 0.1) 中包含 hard negitive examples 的可能性并非没有, 所以我们需要对其做 hard negitive mining, 找到其中的 hard negitive examples 用于训练网络.

按照常理来说 IOU 在[0, 0.1)之内 会被判定为真例的概率很小, 如果这种现象发生了, 可能对于我们训练网络有很大的帮助, 所以 Fast RCNN 会对与 ground truth 的 IoU 在 [0, 0.1)之内的是 example 做 hard negitive examples.


 


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值