[python] Levenshtein包与rapidfuzz包计算字符串编辑距离与相似度

1. Levenshtein包

1.1 计算编辑距离

三类编辑动作{替换, 删除, 插入}的cost均为1。
它等价于公式 d = l e n ( s t r 1 ) + l e n ( s t r 2 ) − s a m e l e n ( s t r 1 , s t r 2 ) d=len(str1)+len(str2)-samelen(str1, str2) d=len(str1)+len(str2)samelen(str1,str2)

>>> import Levenshtein
>>> Levenshtein.distance('lewenstein', 'levenshtein')
2 # w->v, ∅->h

1.2. 计算相似度

不同于1.1,此处编辑动作{删除, 插入}的cost仍为1、但{替换}的cost为2。分母是两个字符串长度之和,相似度的分子是两个字符串长度之和减去编辑动作cost之和。
它等价于公式 s i m = 1 − Σ ( c o s t ) / Σ ( l e n ) sim=1-\Sigma(cost)/\Sigma(len) sim=1Σ(cost)(len)

>>> Levenshtein.ratio('lewenstein', 'levenshtein')
0.8571 # w->v, ∅->h # 1-(2+1)/(10+11)

2. rapidfuzz包

2.1 Indel

  • 计算编辑距离
    编辑动作{删除, 插入}的cost为1,{替换}的cost为2。
>>> from rapidfuzz.distance import Indel
>>> Indel.distance('lewenstein', 'levenshtein')
3
  • 计算相似度
    编辑动作{删除, 插入}的cost为1,{替换}的cost为2。分母是两个字符串长度之和,相似度的分子是两个字符串长度之和减去编辑动作cost之和。
    它与1.2的Levenshtein.ratio公式相同。
>>> Indel.normalized_similarity('lewenstein', 'levenshtein')
0.8571 # 1-3/(11+10)

2.2 Levenshtein

  • 计算编辑距离
    三类编辑动作{替换, 删除, 插入}的cost均为1。
    它与1.1的Levenshtein.distance公式相同。
>>> from rapidfuzz.distance import Levenshtein
>>> Levenshtein.distance('lewenstein', 'levenshtein')
2
  • 计算相似度
    三类编辑动作{替换, 删除, 插入}的cost均为1。分母是两个字符串长度较大值,相似度的分子是两个字符串长度较大值减去编辑动作cost之和。
>>> Levenshtein.normalized_similarity('lewenstein', 'levenshtein')
0.8182 # 1- 2/11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值