8. 最短路径

一. dijkstra 单源最短路径算法

  • 前提条件: 图中不能有负权边
  • 复杂度O(E log(V))
  • 有向图和无向图都适用

算法思路


概念说明:
松弛操作: 从0到1的最短距离, 上图中 0-1为 5, 但是0-2 + 2-1 为3 这样绕道而行更短, 则用0-2 + 2-1 的路径代替  0-1


如上图所示, 起始点为0

步骤1.   建立最小索引堆,存放对应点到0点的距离, 先将0放入
适用distTo数组, 存放0点到该点的已知最短路径。 distTo[0]=0, 其他distTo为null
最小索引堆:
0  
0  


步骤2.   取出最小索引堆中最小的值, 目前是0,从最小索引堆中取出的对应点都mark为true
遍历0的相邻点(mark的值true就跳过), 1 2 3, 将0-1 0-2 0-3 存入最小索引堆。
此时distTo[1]=5, distTo[2]=2, distTo[3]=6
1  2  3
5  2  6



步骤3.   取出最小索引堆中最小的值, 目前是2, makr[2]=true
遍历2的相邻点(mark的值true就跳过), 1 3 4,
对于1, 对比distTo[1] 是否> distTo[2] + 2-1   ,  distTo[1]为5 < distTo[2] + 2-1 即可以做松弛操作, 更新最小索引堆和distTo中1对应的值。 
对于3, 发现也可以做松弛操作, 重复对1的操作, 更新distTo[3]和最小索引堆中的值.
对于4, distTo[4]为null, 让它=distTo[2] + 2-4     ,  同时将该值存入最小索引堆

1  3  4
3  5  7


步骤4. 重复步骤3, 直到最小索引堆为空

代码实现

Dijkstra.h

#ifndef INC_03_IMPLEMENTATION_OF_DIJKSTRA_DIJKSTRA_H
#define INC_03_IMPLEMENTATION_OF_DIJKSTRA_DIJKSTRA_H

#include <iostream>
#include <vector>
#include <stack>
#include "Edge.h"
#include "IndexMinHeap.h"

using namespace std;

// Dijkstra算法求最短路径
template<typename Graph, typename Weight>
class Dijkstra{

private:
    Graph &G;                   // 图的引用
    int s;                      // 起始点
    Weight *distTo;             // distTo[i]存储从起始点s到i的最短路径长度
    bool *marked;               // 标记数组, 在算法运行过程中标记节点i是否被访问
    vector<Edge<Weight>*> from; // from[i]记录最短路径中, 到达i点的边是哪一条
                                // 可以用来恢复整个最短路径

public:
    // 构造函数, 使用Dijkstra算法求最短路径
    Dijkstra(Graph &graph, int s):G(graph){

        // 算法初始化
        assert( s >= 0 && s < G.V() );
        this->s = s;
        distTo = new Weight[G.V()];
        marked = new bool[G.V()];
        for( int i = 0 ; i < G.V() ; i ++ ){
            distTo[i] = Weight();
            marked[i] = false;
            from.push_back(NULL);
        }

        // 使用索引堆记录当前找到的到达每个顶点的最短距离
        IndexMinHeap<Weight> ipq(G.V());

        // 对于起始点s进行初始化
        distTo[s] = Weight();// 调用weight默认构造函数  如果是int double等类型  会默认为0
        from[s] = new Edge<Weight>(s, s, Weight());
        ipq.insert(s, distTo[s] );
        marked[s] = true;
        while( !ipq.isEmpty() ){
            int v = ipq.extractMinIndex();

            // distTo[v]就是s到v的最短距离
            marked[v] = true;

            // 对v的所有相邻节点进行更新
            typename Graph::adjIterator adj(G, v);
            for( Edge<Weight>* e = adj.begin() ; !adj.end() ; e = adj.next() ){
                int w = e->other(v);
                // 如果从s点到w点的最短路径还没有找到
                if( !marked[w] ){
                    // 如果w点以前没有访问过,
                    // 或者访问过, 但是通过当前的v点到w点距离更短, 则进行更新  即松弛操作
                    if( from[w] == NULL || distTo[v] + e->wt() < distTo[w] ){
                        distTo[w] = distTo[v] + e->wt();
                        from[w] = e;
                        if( ipq.contain(w) )
                            ipq.change(w, distTo[w] );
                        else
                            ipq.insert(w, distTo[w] );
                    }
                }
            }
        }
    }

    // 析构函数
    ~Dijkstra(){
        delete[] distTo;
        delete[] marked;
        delete from[0];
    }

    // 返回从s点到w点的最短路径长度
    Weight shortestPathTo( int w ){
        assert( w >= 0 && w < G.V() );
        assert( hasPathTo(w) );
        return distTo[w];
    }

    // 判断从s点到w点是否联通
    bool hasPathTo( int w ){
        assert( w >= 0 && w < G.V() );
        return marked[w];
    }

    // 寻找从s到w的最短路径, 将整个路径经过的边存放在vec中
    void shortestPath( int w, vector<Edge<Weight>> &vec ){

        assert( w >= 0 && w < G.V() );
        assert( hasPathTo(w) );

        // 通过from数组逆向查找到从s到w的路径, 存放到栈中
        stack<Edge<Weight>*> s;
        Edge<Weight> *e = from[w];
        while( e->v() != this->s ){
            s.push(e);
            e = from[e->v()];
        }
        s.push(e);

        // 从栈中依次取出元素, 获得顺序的从s到w的路径
        while( !s.empty() ){
            e = s.top();
            vec.push_back( *e );
            s.pop();
        }
    }

    // 打印出从s点到w点的路径
    void showPath(int w){

        assert( w >= 0 && w < G.V() );
        assert( hasPathTo(w) );

        vector<Edge<Weight>> vec;
        shortestPath(w, vec);
        for( int i = 0 ; i < vec.size() ; i ++ ){
            cout<<vec[i].v()<<" -> ";
            if( i == vec.size()-1 )
                cout<<vec[i].w()<<endl;
        }
    }
};

#endif //INC_03_IMPLEMENTATION_OF_DIJKSTRA_DIJKSTRA_H

边的代码Edge.h

#ifndef INC_03_IMPLEMENTATION_OF_DIJKSTRA_EDGE_H
#define INC_03_IMPLEMENTATION_OF_DIJKSTRA_EDGE_H

#include <iostream>
#include <cassert>

using namespace std;

// 边
template<typename Weight>
class Edge{
private:
    int a,b;    // 边的两个端点
    Weight weight;  // 边的权值

public:
    // 构造函数
    Edge(int a, int b, Weight weight){
        this->a = a;
        this->b = b;
        this->weight = weight;
    }
    // 空的构造函数, 所有的成员变量都取默认值
    Edge(){}

    ~Edge(){}

    int v(){ return a;} // 返回第一个顶点
    int w(){ return b;} // 返回第二个顶点
    Weight wt(){ return weight;}    // 返回权值

    // 给定一个顶点, 返回另一个顶点
    int other(int x){
        assert( x == a || x == b );
        return x == a ? b : a;
    }

    // 输出边的信息
    friend ostream& operator<<(ostream &os, const Edge &e){
        os<<e.a<<"-"<<e.b<<": "<<e.weight;
        return os;
    }

    // 边的大小比较, 是对边的权值的大小比较
    bool operator<(Edge<Weight>& e){
        return weight < e.wt();
    }
    bool operator<=(Edge<Weight>& e){
        return weight <= e.wt();
    }
    bool operator>(Edge<Weight>& e){
        return weight > e.wt();
    }
    bool operator>=(Edge<Weight>& e){
        return weight >= e.wt();
    }
    bool operator==(Edge<Weight>& e){
        return weight == e.wt();
    }
};

#endif //INC_03_IMPLEMENTATION_OF_DIJKSTRA_EDGE_H

最小索引堆的代码IndexMinHeap.h

#ifndef INC_03_IMPLEMENTATION_OF_DIJKSTRA_INDEXMINHEAP_H
#define INC_03_IMPLEMENTATION_OF_DIJKSTRA_INDEXMINHEAP_H

#include <iostream>
#include <algorithm>
#include <cassert>

using namespace std;

// 最小索引堆
template<typename Item>
class IndexMinHeap{

private:
    Item *data;     // 最小索引堆中的数据
    int *indexes;   // 最小索引堆中的索引, indexes[x] = i 表示索引i在x的位置
    int *reverse;   // 最小索引堆中的反向索引, reverse[i] = x 表示索引i在x的位置

    int count;
    int capacity;

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    void shiftUp( int k ){

        while( k > 1 && data[indexes[k/2]] > data[indexes[k]] ){
            swap( indexes[k/2] , indexes[k] );
            reverse[indexes[k/2]] = k/2;
            reverse[indexes[k]] = k;
            k /= 2;
        }
    }

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    void shiftDown( int k ){

        while( 2*k <= count ){
            int j = 2*k;
            if( j + 1 <= count && data[indexes[j]] > data[indexes[j+1]] )
                j += 1;

            if( data[indexes[k]] <= data[indexes[j]] )
                break;

            swap( indexes[k] , indexes[j] );
            reverse[indexes[k]] = k;
            reverse[indexes[j]] = j;
            k = j;
        }
    }

public:
    // 构造函数, 构造一个空的索引堆, 可容纳capacity个元素
    IndexMinHeap(int capacity){

        data = new Item[capacity+1];
        indexes = new int[capacity+1];
        reverse = new int[capacity+1];

        for( int i = 0 ; i <= capacity ; i ++ )
            reverse[i] = 0;

        count = 0;
        this->capacity = capacity;
    }

    ~IndexMinHeap(){
        delete[] data;
        delete[] indexes;
        delete[] reverse;
    }

    // 返回索引堆中的元素个数
    int size(){
        return count;
    }

    // 返回一个布尔值, 表示索引堆中是否为空
    bool isEmpty(){
        return count == 0;
    }

    // 向最小索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
    // 传入的i对用户而言,是从0索引的
    void insert(int index, Item item){
        assert( count + 1 <= capacity );
        assert( index + 1 >= 1 && index + 1 <= capacity );

        index += 1;
        data[index] = item;
        indexes[count+1] = index;
        reverse[index] = count+1;
        count++;
        shiftUp(count);
    }

    // 从最小索引堆中取出堆顶元素, 即索引堆中所存储的最小数据
    Item extractMin(){
        assert( count > 0 );

        Item ret = data[indexes[1]];
        swap( indexes[1] , indexes[count] );
        reverse[indexes[count]] = 0;
        reverse[indexes[1]] = 1;
        count--;
        shiftDown(1);
        return ret;
    }

    // 从最小索引堆中取出堆顶元素的索引
    int extractMinIndex(){
        assert( count > 0 );

        int ret = indexes[1] - 1;
        swap( indexes[1] , indexes[count] );
        reverse[indexes[count]] = 0;
        reverse[indexes[1]] = 1;
        count--;
        shiftDown(1);
        return ret;
    }

    // 获取最小索引堆中的堆顶元素
    Item getMin(){
        assert( count > 0 );
        return data[indexes[1]];
    }

    // 获取最小索引堆中的堆顶元素的索引
    int getMinIndex(){
        assert( count > 0 );
        return indexes[1]-1;
    }

    // 看索引i所在的位置是否存在元素
    bool contain( int index ){

        return reverse[index+1] != 0;
    }

    // 获取最小索引堆中索引为i的元素
    Item getItem( int index ){
        assert( contain(index) );
        return data[index+1];
    }

    // 将最小索引堆中索引为i的元素修改为newItem
    void change( int index , Item newItem ){

        assert( contain(index) );
        index += 1;
        data[index] = newItem;

        shiftUp( reverse[index] );
        shiftDown( reverse[index] );
    }

};

#endif //INC_03_IMPLEMENTATION_OF_DIJKSTRA_INDEXMINHEAP_H


二. 负权边和Bellman-Ford算法

  • 如果存在如下所示的 负权环,就不会存在最短路径了
  • 0-1-2-0 边加起来为负
  • 2-1-2 边加起来为负


Bellman-Ford单源最短路径算法

  • 前提: 图中不能有负权环
  • Bellman-Ford可以判断图中是否有负权环
  • 复杂度O(EV)
判断是否有负权边:
如果一个图没有负权环,
从一点到另一点的最短路径, 最多经过所有的V个顶点, 有V-1条边
否则,存在顶点经过了两次, 即存在负权环
算法描述:
对一个点的一次松弛操作, 就是找到经过这个点的另外一条路径, 多一条边, 权值更小。
如果一个图没有负权环, 从一个点到另外一个点的最短路径, 最多经过所有的V个顶点,有V-1条边
对所有的点进行V-1次松弛操作。

对所有的点进行V-1次松弛操作后, 理论上就找到了从源点到其他所有点的最短路径。
如果说还可以继续做松弛操作, 所说原图中有负权环。

代码实现

Bellmanford.h

#ifndef INC_05_IMPLEMENTATION_OF_BELLMAN_FORD_BELLMANFORD_H
#define INC_05_IMPLEMENTATION_OF_BELLMAN_FORD_BELLMANFORD_H

#include <stack>
#include <vector>
#include "Edge.h"

using namespace std;

// 使用BellmanFord算法求最短路径
template <typename Graph, typename Weight>
class BellmanFord{

private:
    Graph &G;                   // 图的引用
    int s;                      // 起始点
    Weight* distTo;             // distTo[i]存储从起始点s到i的最短路径长度
    vector<Edge<Weight>*> from; // from[i]记录最短路径中, 到达i点的边是哪一条
                                // 可以用来恢复整个最短路径
    bool hasNegativeCycle;      // 标记图中是否有负权环

    // 判断图中是否有负权环
    bool detectNegativeCycle(){

        for( int i = 0 ; i < G.V() ; i ++ ){
            typename Graph::adjIterator adj(G,i);
            for( Edge<Weight>* e = adj.begin() ; !adj.end() ; e = adj.next() )
                if( from[e->v()] && distTo[e->v()] + e->wt() < distTo[e->w()] )  //还有点没做松弛操作
                    return true;
        }

        return false;
    }

public:
    // 构造函数, 使用BellmanFord算法求最短路径
    BellmanFord(Graph &graph, int s):G(graph){

        this->s = s;
        distTo = new Weight[G.V()];
        // 初始化所有的节点s都不可达, 由from数组来表示
        for( int i = 0 ; i < G.V() ; i ++ )
            from.push_back(NULL);

        // 设置distTo[s] = 0, 并且让from[s]不为NULL, 表示初始s节点可达且距离为0
        distTo[s] = Weight();
        from[s] = new Edge<Weight>(s, s, Weight()); // 这里我们from[s]的内容是new出来的, 注意要在析构函数里delete掉

        // Bellman-Ford的过程
        // 进行V-1次循环, 每一次循环求出从起点到其余所有点, 最多使用pass步可到达的最短距离
        for( int pass = 1 ; pass < G.V() ; pass ++ ){

            // 每次循环中对所有的边进行一遍松弛操作
            // 遍历所有边的方式是先遍历所有的顶点, 然后遍历和所有顶点相邻的所有边
            for( int i = 0 ; i < G.V() ; i ++ ){
                // 使用我们实现的邻边迭代器遍历和所有顶点相邻的所有边
                typename Graph::adjIterator adj(G,i);
                for( Edge<Weight>* e = adj.begin() ; !adj.end() ; e = adj.next() )
                    // 对于每一个边首先判断e->v()可达
                    // 之后看如果e->w()以前没有到达过, 显然我们可以更新distTo[e->w()]
                    // 或者e->w()以前虽然到达过, 但是通过这个e我们可以获得一个更短的距离, 即可以进行一次松弛操作, 我们也可以更新distTo[e->w()]
                    if( from[e->v()] && (!from[e->w()] || distTo[e->v()] + e->wt() < distTo[e->w()]) ){
                        distTo[e->w()] = distTo[e->v()] + e->wt();
                        from[e->w()] = e;
                    }
            }
        }

        hasNegativeCycle = detectNegativeCycle();
    }

    // 析构函数
    ~BellmanFord(){

        delete[] distTo;
        delete from[s];
    }

    // 返回图中是否有负权环
    bool negativeCycle(){
        return hasNegativeCycle;
    }

    // 返回从s点到w点的最短路径长度
    Weight shortestPathTo( int w ){
        assert( w >= 0 && w < G.V() );
        assert( !hasNegativeCycle );
        assert( hasPathTo(w) );
        return distTo[w];
    }

    // 判断从s点到w点是否联通
    bool hasPathTo( int w ){
        assert( w >= 0 && w < G.V() );
        return from[w] != NULL;
    }

    // 寻找从s到w的最短路径, 将整个路径经过的边存放在vec中
    void shortestPath( int w, vector<Edge<Weight>> &vec ){

        assert( w >= 0 && w < G.V() );
        assert( !hasNegativeCycle );
        assert( hasPathTo(w) );

        // 通过from数组逆向查找到从s到w的路径, 存放到栈中
        stack<Edge<Weight>*> s;
        Edge<Weight> *e = from[w];
        while( e->v() != this->s ){
            s.push(e);
            e = from[e->v()];
        }
        s.push(e);

        // 从栈中依次取出元素, 获得顺序的从s到w的路径
        while( !s.empty() ){
            e = s.top();
            vec.push_back( *e );
            s.pop();
        }
    }

    // 打印出从s点到w点的路径
    void showPath(int w){

        assert( w >= 0 && w < G.V() );
        assert( !hasNegativeCycle );
        assert( hasPathTo(w) );

        vector<Edge<Weight>> vec;
        shortestPath(w, vec);
        for( int i = 0 ; i < vec.size() ; i ++ ){
            cout<<vec[i].v()<<" -> ";
            if( i == vec.size()-1 )
                cout<<vec[i].w()<<endl;
        }
    }
};

#endif //INC_05_IMPLEMENTATION_OF_BELLMAN_FORD_BELLMANFORD_H

三. 其他

最长路径算法

  • 最长路径问题不能有正权环
  • 无权图的最长路径问题是指数级难度的。
  • 对于有权环, 不能使用Dijkstra求最长路径问题。
  • 可以使用Bellman-Ford算法, (对所有的权取负, 求得的最短路径再取负,得到的就是最长路径)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值