动态规划专练(62.不同路径)

62.不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

题解:做动态规划的题,需要考虑五个步骤:

  • dp数组的含义是什么?
  • dp数组如何初始化?
  • 递推的公式是啥?
  • 遍历的顺序是啥?
  • 打印dp数组(调试用)

分析题意,我们设定dp[i][j]的含义为到第i行,第j列所有的走法。

由于题目表示只能向右和向下,那么从左上角出发,第一行所有的走法都是只有唯一的一种,第一列也是一样,都初始化成1.

考虑到第i行第j列的时候,如何才能走到第i行第j列,只能从第i - 1行第j列这个位置向下走,或者从第i行第j-1列这个位置向右一步。那么可以得出走到第i行第j列的走法是,走上上面格子和左边格子的可能性相加。

因此得出地推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

代码实现如下:

package com.offer;

/**
 * @author bwzfy
 * @create 2024/4/11
 **/
public class _62不同路径 {

    public static void main(String[] args) {
        System.out.println(uniquePaths(3, 7));
    }

    public static int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        for (int i = 0; i < n; i++) {
            dp[0][i] = 1;
        }
        for (int i = 1; i < m; i++) {
            dp[i][0] = 1;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值