62.不同路径
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
提示:
1 <= m, n <= 100
- 题目数据保证答案小于等于
2 * 109
题解:做动态规划的题,需要考虑五个步骤:
- dp数组的含义是什么?
- dp数组如何初始化?
- 递推的公式是啥?
- 遍历的顺序是啥?
- 打印dp数组(调试用)
分析题意,我们设定dp[i][j]
的含义为到第i行,第j列所有的走法。
由于题目表示只能向右和向下,那么从左上角出发,第一行所有的走法都是只有唯一的一种,第一列也是一样,都初始化成1.
考虑到第i行第j列的时候,如何才能走到第i行第j列,只能从第i - 1行第j列这个位置向下走,或者从第i行第j-1列这个位置向右一步。那么可以得出走到第i行第j列的走法是,走上上面格子和左边格子的可能性相加。
因此得出地推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
代码实现如下:
package com.offer;
/**
* @author bwzfy
* @create 2024/4/11
**/
public class _62不同路径 {
public static void main(String[] args) {
System.out.println(uniquePaths(3, 7));
}
public static int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for (int i = 0; i < n; i++) {
dp[0][i] = 1;
}
for (int i = 1; i < m; i++) {
dp[i][0] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}