DataFrame(10):DataFrame运算——累计统计函数

1、相关函数说明

在这里插入图片描述

2、原始数据
df = pd.DataFrame({"id":["00{}".format(i) for i in range(1,10)],
                   "score":[2,3,4,4,5,6,7,7,8]})
display(df)

结果如下:
在这里插入图片描述

3、cumsum()函数:求前n个元素的累积值(很重要的一个函数)
df = pd.DataFrame({"id":["00{}".format(i) for i in range(1,10)],
                   "score":[2,3,4,4,5,6,7,7,8]})
display(df)

df["cumsum"] = df["score"].cumsum(axis=0)
display(df)

结果如下:
在这里插入图片描述

1)cumsum():分组求累计值
df = pd.DataFrame({"id":["001","001","002","003","001","002","002","003","003"],
                   "score":[2,3,4,4,5,6,7,7,8]})
display(df)

df["分组求累计值"] = df.groupby("id").cumsum()
df = df.sort_values(by=["id"])
display(df)

结果如下:
在这里插入图片描述

4、cummax()函数:求前n个元素中的最大值
df = pd.DataFrame({"score":[1,2,1,5,2,6,3,7,1]})
display(df)

df["前n个值中最大值"] = df["score"].cummax(axis=0)
display(df)

结果如下:
在这里插入图片描述

1)cummax()函数:分组求前n个元素中的最大值
df = pd.DataFrame({"id":["001","001","002","003","001","002","002","003","003"],
                   "date":["2020-01-01","2020-01-09","2020-01-05","2020-01-03",
                           "2020-01-08","2020-01-07","2020-01-02","2020-01-04","2020-01-06"],
                   "score":[1,2,1,5,2,6,3,7,1]})
display(df)

df = df.sort_values(by=["id","date"],ascending=[True,True])
df["前n个值中最大值"] = df.groupby("id")["score"].cummax()
display(df)

结果如下:
在这里插入图片描述
注意:cummin()函数的用法和cummax()函数的用法一致,可以自行下去尝试。
  

5、cumprod()函数:求前n个元素的累乘积
df = pd.DataFrame({"score":[1,2,1,5,2,6,3,7,1]})
display(df)

df["前n个值的累乘积"] = df["score"].cummax(axis=0)
display(df)

结果如下:
在这里插入图片描述
注意:对于分组求前n个元素的累乘积,和上面用法一致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据分析与统计学之美

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值