极化码-基本原理

基本概念

信噪比

信噪比,英文名称叫做SNR(SIGNAL-NOISE RATIO ),是指一个电子设备或者电子系统中信号与噪声的比例。信噪比的计算可以为有用信号功率与噪声功率的比

S N R = P s i g n a l P n o i s e SNR = \frac {P_{signal}} {P_{noise}} SNR=PnoisePsignal

它的单位一般使用分贝,其值为十倍对数信号与噪声功率比:

S N R ( d B ) = 10 log ⁡ 10 ( P s i b n a l P n o i s e ) SNR(dB) = 10\log_{10}(\frac {P_{sibnal}} {P_{noise}}) SNR(dB)=10log10(PnoisePsibnal)

其中, P s i g n a l P_{signal} Psignal为信号功率, P n o i s e P_{noise} Pnoise为噪声功率。

转移概率

一个二进制输入离散无记忆信道(B-DMC)可表示为 W : X → Y W:X\to Y W:XY X X X是输入符号集合, Y Y Y是输出符号集合,转移概率为 W ( y ∣ x ) , x ∈ X , y ∈ Y W\left( y|x \right),x\in X,y\in Y W(yx),xX,yY。由于信道是二进制输入,集合 X = { 0 , 1 } X=\left\{ 0,1 \right\} X={0,1} Y Y Y W ( y ∣ x ) W\left( y|x \right) W(yx)是任意值。对信道 W W W N N N次使用后的信道可表示为 W N {W^{N}} WN,则信道 W N : X N → Y N {W^{N}}:{X^{N}}\to {Y^{N}} WN:XNYN的转移概率为:

W N ( y 1 N ∣ x 1 N ) = ∏ i = 1 N W ( y ∣ x ) {W^{N}}\left( y_1^{N}|x_{1}^{N} \right)=\prod\nolimits_{i=1}^{N}{W\left( y|x \right)} WN(y1Nx1N)=i=1NW(yx)

对称容量

对称容量是对信道速率的度量,记作 I ( W ) I(W) I(W),表示信道 W W W在等概率输入下的可靠传输时的最大速率,计算公式如下:

I ( W ) ≜ ∑ y ∈ Y ∑ x ∈ X 1 2 W ( y ∣ x ) log ⁡ W ( y ∣ x ) 1 2 W ( y ∣ 0 ) + 1 2 W ( y ∣ 1 ) I\left( W \right)\triangleq \sum\limits_{y\in Y}{\sum\limits_{x\in X}{\frac{1}{2}}}W\left( y|x \right)\log \frac{W\left( y|x \right)}{\frac{1}{2}W\left( y|0 \right)+\frac{1}{2}W\left( y|1 \right)} I(W)yYxX21W(yx)log21W(y0)+21W(y1)W(yx)

当码长 N N N趋近于无穷的时候,信道容量趋近于1的分裂信道比例约为 K = N × I ( W ) K=N×I(W) K=N×I(W),这部分是用来传输信息比特的信道数量,而信道容量趋近于0的比例约为 N × ( 1 − I ( W ) ) N×(1−I(W)) N×(1I(W)),这部分表示冻结比特的信道数量。对于信道容量为1的可靠信道,可以直接放置消息比特而不采用任何编码,即相当于编码速率为 R = 1 R=1 R=1;而对于信道容量为0的不可靠信道,可以放置发送端和接收端都事先已知的冻结比特,即相当于编码速率为 R = 0 R=0 R=0。那么当码长 N → ∞ N \to\infty N时,极化码的可达编码速率 R = K N = N × I ( W ) N = I ( W ) R= \frac {K}{N}= \frac {N×I(W)}{N}=I(W) R=NK=NN×I(W)=I(W),即在理论上,极化码可以被证明是可达信道容量的。

信道极化

信道极化分为信道联合和信道分裂两个阶段。对于长度为 N = 2 n N={2^{n}} N=2n n n n为任意整数)的极化码,它利用信道 W W W N N N个独立副本,进行信道联合和信道分裂,得到新的 N N N个子信道 { W N ( 1 ) , W N ( 2 ) , . . . , W N ( N ) } \left\{ W_{N}^{\left( 1 \right)},W_{N}^{\left( 2 \right)},...,W_{N}^{\left( N \right)} \right\} {WN(1),WN(2),...,WN(N)}。随着码长的增加,分裂之后的信道将向两个极端发展:其中一部分分裂信道会趋近于完美信道,即信道容量趋近于1的无噪声信道;而另一部分分裂信道会趋近于完全噪声信道,即信道容量趋近于0的信道。

我们主要研究二进制离散无记忆信道,将上面的信道模型(包括BEC、BSC、AWGN)进行抽象,我们可以得出下面的信道传输模型:

基本信道模型

图中的W可以是BEC信道,也可以是BSC信道或者AWGN信道,其中I(W)为信道容量。

信道联合

信道联合是将多个子信道进行蝶形的异或操作的过程。对于码长为N=2的极化码,我们可以通过下面的蝶形异或操作将两个信道进行混合:

码长N=2信道联合

由上图可以发现,进行信道联合之后,坐标不同信道的信道容量发生了极化现象,有一个比特的信道信道容量 I ( W ) I(W) I(W)增加了,另外一个比特的信道容量 I ( W ) I(W) I(W)减少了。信道容量小的,我们称为差信道,信道容量大的,我们称为号好信道。因为进行了信道联合之后,因为要求得左边的信道 u 1 u1 u1,必须是在右边的信道 y 1 y1 y1 y 2 y2 y2同时都收到的情况下才能够得出 u 1 u1 u1,所以 u 1 u1 u1的信道容量就是信道 y 1 y1 y1 y 2 y2 y2的信道容量乘积;相应的,对于信道 u 2 u2 u2,只有 y 1 y1 y1 y 2 y2 y2都收不到的情况下,才接收不到信道,所以它的信道容量 I ( W ) I(W) I(W) 2 ∗ 0.5 − 0. 5 2 2*0.5 - 0.5^{2} 20.50.52

我们也可以使用一个二维表格来计算它们传输的概率:

y1y2u1u2
xx
xx
xxxx

由表格1可以发现,对于接收方收到的信号y1和y2,总共有4种情况,X表示该信道发生错误,未收到信道;√表示该信道收到了信道。对于子信道u1,在四种情况中,只有一种情况能够接受得到u1,也就是同时接收到y1和y2的情况,所以信道容量为1/4;而对于u2,只要能够收到y1或y2的任意一个它就能够解出来,根据信道极化理论,我们在进行极化的过程中,就已经知道信道u1的信道容量比较小,我们会把它作为冻结比特,填充为0,不传输信息比特,仅传输冻结比特,所以在没有接收到y2的情况下我们也能够得出u2。

对于N=4的码长,我们可以递归的进行信道联合,如图,只不过相比于N=2的码长的极化码,我们需要增加一次的信道联合过程:

码长N=4信道联合

按照这样不断的递归下去,到n级之后,可以得到递归的一般式: W N / 2    {W_{N/{2}\;}} WN/2的2个独立副本联合产生信道 W N {W_{N}} WN,我们可以的到任意码长为 N = 2 n N=2^{n} N=2n的极化码。

信道分裂

信道分裂体现在信道联合之中 ,参考文献中对于信道分裂的解释,其大致过程是将两个信道 W N / 2 W_{N/2} WN/2联合成一个信道 W N W_N WN之后,再将联合的信道 W N W_N WN分裂成两个子信道 W N / 2 W_{N/2} WN/2,此时,这两个子信道的转移概率也改变了,这样极化码就完成了信道分裂。更具体的来说,它存在以下两个递推公式计算子信道的转移概率:

W N ( 2 i − 1 ) ( y 1 N , u 1 2 i − 2 ∣ u 2 i − 1 ) = ∑ u 2 i 1 2 W N / 2    ( i ) ( y 1 N / 2    , u 1 , o 2 i − 2 ⊕ u 1 , e 2 i − 2 ∣ u 2 i − 1 ⊕ u 2 i ) ⋅ W N / 2    ( i ) ( y N / 2    + 1 N , u 1 , e 2 i − 2 ∣ u 2 i ) W_{N}^{\left( 2i-1 \right)}\left( y_{1}^{N},u_{1}^{2i-2}|{u_{2i-1}} \right)=\sum\limits_{u_{2i}}{\frac{1}{2}W_{N/{2}\;}^{\left( i \right)}\left( y_{1}^{N/{2}\;},u_{1,o}^{2i-2}\oplus u_{1,e}^{2i-2}|{u_{2i-1}}\oplus {u_{2i}} \right)\cdot W_{N/{2}\;}^{\left( i \right)}\left( y_{N/{2}\;+1}^{N},u_{1,e}^{2i-2}|{u_{2i}} \right)} WN(2i1)(y1N,u12i2u2i1)=u2i21WN/2(i)(y1N/2,u1,o2i2u1,e2i2u2i1u2i)WN/2(i)(yN/2+1N,u1,e2i2u2i)

W N ( 2 i ) ( y 1 N , u 1 2 i − 1 ∣ u 2 i ) = 1 2 W N / 2    ( i ) ( y 1 N / 2    , u 1 , o 2 i − 2 ⊕ u 1 , e 2 i − 2 ∣ u 2 i − 1 ⊕ u 2 i ) ⋅ W N / 2    ( i ) ( y N / 2    + 1 N , u 1 , e 2 i − 2 ∣ u 2 i ) W_{N}^{\left( 2i \right)}\left( y_{1}^{N},u_{1}^{2i-1}|{u_{2i}} \right)=\frac{1}{2}W_{N/{2}\;}^{\left( i \right)}\left( y_{1}^{N/{2}\;},u_{1,o}^{2i-2}\oplus u_{1,e}^{2i-2}|{u_{2i-1}}\oplus {u_{2i}} \right)\cdot W_{N/{2}\;}^{\left( i \right)}\left( y_{N/{2}\;+1}^{N},u_{1,e}^{2i-2}|{u_{2i}} \right) WN(2i)(y1N,u12i1u2i)=21WN/2(i)(y1N/2,u1,o2i2u1,e2i2u2i1u2i)WN/2(i)(yN/2+1N,u1,e2i2u2i)


参考:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JiahongWu

请我喝咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值