pythorch版本和torchvision版本对应关系及torchvision安装

本文介绍了在安装torchvision时遇到版本不匹配的问题及解决方法。首先,通过torch.__version__检查pytorch版本,发现为1.7.1+cu110。然后,从github找到torchvision和pytorch的版本对应关系,并确定1.7.1对应的torchvision版本为0.8.2。接着,访问下载页面下载匹配的whl文件,如torchvision-0.8.2+cu110-cp38-cp38-win_amd64.whl。最后,使用pip安装指定路径的whl文件,成功解决匹配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   最近安装torchvision时总是失败,提示torchvision版本和torch版本不匹配,通过技术交流群里面大神指点,发现torchvision版本和torch版本有匹配关系,现将采坑经验分享如下:

    ①torchvision和pytorch版本对应关系说明地址:https://github.com/pytorch/vision

   ② torchvision下载地址:https://download.pytorch.org/whl/cu110/torch_stable.html

    pytorch安装本文不再赘述,如果想了解可以看我另外一篇博客:https://blog.csdn.net/weixin_41267342/article/details/112066981,本文只讲述torchvision安装。

 1、查看自己pytorch版本方法:

import torch
print(torch.__version__)

 打印结果:1.7.1+cu110,pytorch版本为1.7.1,cu110表示支持gpu加速运算,gpu版本为:11

2、网上查资料,安装touchvision方式如下:

    ①Anaconda:

     conda install torchvision -c pytorch

    ②pip:

     pip install torchvision

   ③From source:

    python setup.py install
   # or, for OSX
   # MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

   我在pycharm的terminal中执行命令:pip install torchvision  

   但在安装过程中,会报错:

        ERROR: Could not find a version that satisfies the requirement torch==1.4.0 (from torchvision) (from versions: 0.1.2, 0.1.2.post1, 0.1.2.post2, 1.7.1)
       ERROR: No matching distribution found for torch==1.4.0 (from torchvision)

    该错误信息即为torchvision版本和torch版本不匹配。

3、然后接下来就是想办法找和pytorch匹配的torvision版本了。

   网上查资料,很多给的版本都在1.5一下,而我的pytorch版本为1.7.1+cu110,超了文章最新中版本。

  然后就是想办法找最新的版本匹配说明,这个在github上有,具体地址为:

   https://github.com/pytorch/vision

可以看到最新更新的官网说明:

我的1.7.1匹配的torchvison版本为0.8.2

4、下载torchvison地址:https://download.pytorch.org/whl/cu110/torch_stable.html

    torchvision-0.8.2%2Bcu110-cp38-cp38-win_amd64.whl中的命名解释:

    ① torchvision-0.8.2:表示 torchvision版本为:0.8.2

   ②cu110:支持的cuda(GPU)版本为:11

   ③cp38:指的是anaconda中的python版本为python38

   ④win_amd64:用于64位window系统。

     我的anacond中python版本为python38,在windows64位系统上运行,故需要的版本为:torchvision-0.8.2%2Bcu110-cp38-cp38-win_amd64.whl

5、下载后放到指定位置,例如:F:\WorkSpace\python\project_one>,通过pycharm的terminal窗口执行pip install torchvision-0.8.2+cu110-cp38-cp38-win_amd64.whl

 

 

 

### 安装 PyTorch 1.8.0 的方法 对于 Nvidia Jetson Xavier AGX 平台,其 CUDA 版本为 10.2,Jetpack 版本为 JP 4.5,Python 支持版本为 Python 2.7 Python 3.6。因此,在安装 PyTorch 1.8.0 时需特别注意兼容性。 #### 方法一:通过 Conda 安装 可以使用 `conda` 命令来安装与指定 CUDA 工具包匹配的 PyTorch 版本。以下是适用于该平台的具体命令: ```bash conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch -c conda-forge ``` 此命令会自动配置适合 CUDA 10.2 的环境并安装对应的 PyTorch 及其他依赖库[^3]。 --- #### 方法二:通过 pip 使用预编译 whl 文件 如果偏好使用 `pip` 或者需要更灵活的控制,则可以通过下载官方提供的 `.whl` 文件完成安装。具体操作如下: 1. **确认 Python 版本** 确保当前使用的 Python 是支持的版本 (如 Python 3.6),可通过以下命令验证: ```bash python --version ``` 2. **获取合适的 .whl 链接** 访问 [PyTorch 官方网站](https://pytorch.org/get-started/previous-versions/),选择对应的操作系统、CUDA 版本以及 Python 解释器组合。例如,针对 Ubuntu 系统 CUDA 10.2 的情况,可找到类似以下链接: ``` https://download.pytorch.org/whl/cu102/torch_stable.html ``` 3. **执行安装命令** 下载完成后运行以下命令完成安装: ```bash pip install torch==1.8.0+cu102 torchvision==0.9.0+cu102 torchaudio===0.8.0 -f https://download.pytorch.org/whl/cu102/torch_stable.html ``` 上述命令能够确保安装的 PyTorch 与其所依赖的 CUDA 库完全一致[^1]。 --- #### 注意事项 由于 TensorRT 版本为 7.1,而 cuDNN 版本为 8.0,这些工具链可能会影响某些深度学习框架的功能表现。建议测试模型推理性能前先验证基础功能是否正常工作。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值