Python 操作 mongodb 亿级数据量使用 Bloomfilter 高效率判断唯一性 例子

本文介绍了在Python环境下,如何利用Bloom Filter高效处理mongodb中的亿级数据量,实现快速判断数据唯一性。通过引入Pybloom库,演示了Bloom Filter的基本使用方法,包括添加元素、判断元素存在性等操作,以解决大数据量下的去重问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

工作需要使用 python 处理 mongodb 数据库两亿数据量去重复,需要在大数据量下快速判断数据是否存在

参考资料:https://segmentfault.com/q/1010000000613729

网上了解到 Bloom Filter ,Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员。

关于 Bloom Filter 的详细介绍请参考:百度百科

使用Python可直接安装 Pybloom 包,这里已经实现了 Bloom Filter。

安装 Pybloom 包过程曲折,报错及解决办法在此:windows下python3.7安装pybloom报错解决办法

包安装成功后就可以愉快的使用了

使用例子如下:

from pybloom import BloomFilter

bf = BloomFilter(capacity=10000, error_rate=0.001)

bf.add("www.baidu.com")

print("www.baidu.com" in bf)   # True

print("www.douban.com" in bf)  # False
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值