“两数相乘求进制”的方法:

通过一个具体的例题,介绍了如何在不同进制下求解两数相乘的结果,涉及乘法原理和模运算。通过逐步排除法,最终确定在18进制下等式567*456=150216成立。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以例题为例:假设在n进制下,下面的等式成立567*456=150216,则n 的值是(D)

            A:9  B:10  C:12  D:18

求解步骤:

第一步:两乘数的最后一位相乘,题中则是6*7==42,乘积最后一位是6,是因为它不是十进制乘法,所以42%n==6,得出这个结果就把B选项排除。但是选项中的9、12、18都可以使42%n==6,所以进行下一步;

第二步:任何一个数字都可以这样表示   例:1234=1*n^3+2*n^2+3*n^1+4

 同理:567*456=150

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值