由乘法求未知进制问题
Q:在n进制下,下列等式成立567*456=150216,求n的值:
A:9
B:10
C:12
D:18
①:我们把式子展开
(5n^2+6n+7) * (4n^2+5n+6) = (n^5+5n^4+2n^2+n+6)
进一步整理:
20n^4+24n^3+28n^2+25n^3+30n^2+35n+30n^2+36n+42 = n^5+5n^4+2n^2+n+6
整理后有:
20n^4+49n^3+88n^2+71n+42 = n^5+5n^4+2n^2+n+6
②:两边同时对n取余
42%n = 6%n
因为n小于6会进位,所以n肯定大于6。
所以右边6%n=6
可得公式一:42%n = 6
所以我们判断进制问题时可以从个位开始判断,同时两边对n取余得到公式一来判断
③:当判断个位不能找出正确答案时,我们需要第二个公式帮助我们判断,我们可以先两边除以n再对n取余得到公式二
两边/n有:
20n^3+49n^2+88n+71+42/n = n^4+5n^3+2n+1+6/n
再两边同时对n取余有:
(71+42/n)%n = (1+6/n)%n
因为n>6
所以可得公式二:(71+42/n)%n = 1
现在由公式一和公式二判断,公式一判断完,剩下9,12,18,再用公式二判断,排除9,12。
所以答案选18,D