线性回归与分类

本文介绍了线性回归的基本形式和最小二乘法求解过程,接着讨论了对数线性回归,特别是对数几率回归(Logistic Regression)及其在分类任务中的应用,包括代价函数、极大似然估计和梯度下降法。此外,还涉及线性判别分析(LDA)的思想和多分类学习策略,以及如何处理类别不平衡问题。
摘要由CSDN通过智能技术生成

基本形式
线性模型是通过属性的线性组合来进行预测的函数:

一般用向量形式写成:

由于w直观的表达了各属性在预测中的重要性,因此线性模型具有很好的解释性。

线性回归
线性回归则试图学得一个线性模型尽可能准确地将预测f(xi)去 逼近yi,即:
在这里插入图片描述
一个良好的线性回归模型的关键就是如何将f(xi)与yi之间的误差最小化!而该模型是由w以及b确定的,那么问题回到w,b的确定:
即满足下式:
在这里插入图片描述
基于均方误差最小化来进行模型求解的方法称为“最小二乘法”。
求解w和b使上式最小化的过程,称为线性回归模型的最小二乘“参数估计”。

分别对w,b求偏导并为零得到唯一最优解。这里w,b均为一个值。

当输入的x为多个特征的向量时,我们学得的线性函数称为“多元线性回归”。如下式,w,b均为向量。

令X的增广矩阵和w^增广矩阵分别为:

在这里插入图片描述
W’=(w;b)
则有:
在这里插入图片描述
W’为最小二乘所求参数估计为:
在这里插入图片描述
对w’求导为:
在这里插入图片描述
在这里插入图片描述
当X转置乘以X满秩时则可逆有唯一解,不满秩时有多个解,学习算法的归纳偏好决定选择哪个解,常见的做法是引入正则化项。
在这里插入图片描述
L2正则化能有效防止参数θ过大而导致的模型过拟合,同时也可以使矩阵(XTX+λI)-1可逆,保证了参数矩阵θ的唯一解,损失函数带L2正则化的线性回归称为Ridge回归。L1正则化可以使部分参数θ为零,从而具有特征选择的作用,可用于降维处理,损失函数带L1正则

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值