基于混合粒子群算法求解TSP的仿真实验(Pycharm23.01)

技术文档摘要简介

本技术文档描述了一个基于‌粒子群优化算法(PSO)‌的‌旅行商问题(TSP)交互式求解系统‌,通过GUI界面实现参数配置、算法执行与结果可视化。以下是核心功能与技术实现要点:


1. ‌核心功能
  • TSP求解与交互‌:支持用户导入标准TSP数据文件(含NODE_COORD_SECTION),动态调整PSO迭代次数与种群规模,实时显示优化过程日志。
  • 多模态可视化‌:集成Matplotlib绘制城市坐标分布图与最优路径图,支持高分辨率图像输出。
  • 结果反馈‌:输出最优路径序列(城市编号从1开始)及总距离,提供可视化验证与文本日志记录。
  • 异常处理‌:文件读取时自动校验数据格式,断言失败时终止处理,避免无效输入。

2. ‌技术栈
  • GUI框架‌:PyQt5实现主界面(参数输入、文件选择、结果展示)。
  • 优化算法‌:自定义PSO类封装粒子群优化逻辑,适应TSP问题特性。
  • 数据处理‌:NumPy解析城市坐标矩阵,支持大规模TSP实例(如eil101.tsp)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一九天虚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值