技术文档摘要简介
本技术文档描述了一个基于粒子群优化算法(PSO)的旅行商问题(TSP)交互式求解系统,通过GUI界面实现参数配置、算法执行与结果可视化。以下是核心功能与技术实现要点:
1. 核心功能
- TSP求解与交互:支持用户导入标准TSP数据文件(含
NODE_COORD_SECTION
),动态调整PSO迭代次数与种群规模,实时显示优化过程日志。 - 多模态可视化:集成Matplotlib绘制城市坐标分布图与最优路径图,支持高分辨率图像输出。
- 结果反馈:输出最优路径序列(城市编号从1开始)及总距离,提供可视化验证与文本日志记录。
- 异常处理:文件读取时自动校验数据格式,断言失败时终止处理,避免无效输入。
2. 技术栈
- GUI框架:PyQt5实现主界面(参数输入、文件选择、结果展示)。
- 优化算法:自定义
PSO
类封装粒子群优化逻辑,适应TSP问题特性。 - 数据处理:NumPy解析城市坐标矩阵,支持大规模TSP实例(如
eil101.tsp
)。