推荐系统 - 总结 - 架构:从召回到排序再到重排

本文探讨了推荐系统中召回和排序阶段的技术发展趋势。在召回阶段,多路召回、用户行为序列召回和用户多兴趣拆分成为热点,其中GRU模型在序列建模中表现优异。排序模型则关注深度学习的应用,解决时效性问题,如时间衰减和使用RNN捕捉时序信息。此外,文章提出了在推荐系统中考虑用户行为的时效性以提高推荐质量的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐系统与NLP和CV领域比,发展速度不算太快。不过最近两年,由于深度学习等一些新技术的引入,总体还是表现出了一些比较明显的技术发展趋势。这篇文章试图从推荐系统几个环节,以及不同的技术角度,来对目前推荐技术的趋势做个归纳。

1. 推荐系统的宏观架构

实际的工业推荐系统,如果粗分的化,经常讲的有两个阶段。首先是召回,主要根据用户部分特征,从海量的物品库里,快速找回用户潜在感兴趣的那一小部分物品,然后交给排序环节,排序环节可以融入较多特征,使用复杂模型,来精准地做个性化推荐。召回强调快,排序强调准

如果我们更细致地看实用的推荐系统,一般会有四个环节,如下图所示:

四个环节分别是:召回、粗排、精排和重排。

  • 召回的目的如上所述
  • 有时候因为每个用户召回环节返回的物品数量还是太多,怕排序环节速度跟不上,所以可以在召回和精排之间加入一个粗排环节,通过少量用户和物品特征、简单模型,来对召回的结果进行个粗略的排序,在保证一定精准的前提下,进一步减少往后传送的物品数量,粗排往往是可选的,可用可不同,跟场景有关。
  • 之后,是精排环节,使用你能想到的任何特征,可以上你能承受速度极限的复杂模型,尽量精准地对物品进行个性化排序。
  • 排序完成后,传给重排环节,传统地看,这里往往会上各种技术及业务策略,比如去已读、去重、打散、多样性保证、固定类型物品插入等等,主要是技术产品策略主导或者为了改进用户体验。

JD推荐系统架构:

                         

那么,每个环节,从技术发展的角度看,都各自有怎样的发展趋势呢?下

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值