本文主要包含HashMap的概述,数据结构和源码分析。
一.HashMap概述
HashMap基于哈希表的Map的接口实现。此事件提供所有可选的映射操作,并允许使用null键和null值。(除了不同步和允许使用null之外,HashMap类与Hashtable类大致相同)
HashMap不是线程安全的,如果想要获取线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap。
Map map = Collections.synchronizedMap(new HashMap());
二.HashMap的数据结构
HashMap底层主要是基于数组和链表实现的,他之所以有相当快的查询速度是因为他是通过计算散列的哈希码来决定存储的位置。HashMap主要是通过计算key的HashCode来计算hash值额,只要hashCode值相同,计算出来的哈希值就是相同的,这就产生了所谓的hash冲突。解决hash冲突的办法有很多,HashMap底层是通过链表解决hash冲突的。
图中,0~15部分即代表哈希表,也称哈希数组,数组的每个元素都是一个单链表的头结点,链表就是用来解决冲突的,如果不同的key映射到数组的同一位置处,就将其放入单链表中。
从上图我们可以发现HashMap是有数组+链表实现的,一个长度为16的数组中,每个元素存储的是一个链表的头结点Bucket桶。那么这些元素是按照什么样的规则存储到数组中呢。一般情况是hash(key)*len获得,也就是元素的key的哈希值对数组长度去模得到。比如上述hash表中,12%16=12,28%16=12,140%16=12....所以这些都存储在数组下表为12的位置
HashMap其实也可以理解为其存储数据的容器就是一个线性数组。首先HashMap里面实现一个静态内部类Entry,其重要的属性有key,value,next,很明显可以看出Entry就是HashMap键值对实现的一个基础Bean,刚才说到的HashMap基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面.(其实就是Node[])
源码如下(jdk1.8):
HashMap其实就是一个Node数组,Node对象包含了键和值,其中next对象也是一个Node对象,它就是用来解决hash冲突的,形成一个链表。
三.HashMap源码分析
1.关键属性:
transient Node<K,V>[] table;;//存储元素的实体数组
transient int size;//存放元素的个数
int threshold; //临界值 当实际大小超过临界值时,会进行扩容threshold = 加载因子*容量
final float loadFactor;//负载因子transient int modCount; // 被修改的次数
其中,loadFactor负载因子是表示hash表中的填满长度、
若:负载因子越大,代表点满的元素越多,好处是,空间利用率高了,但是冲突的机会会加大了,而且,链表的长度会越来越长,查询效率越来越低。
反之,负载因子越小,填满的元素越少,好处是,冲突的机会减小了,但,空间浪费多了,哈希表中的数据将过于稀疏(很多空间还没用,就开始扩容了)
冲突的机会越大,则查询额成本越高。所以就产生"时-空"矛盾、
如果机器内存足够,并且想要挺好查询速度的话可以将负载因子设置的小一点。相反,如果机器内存机制哪行,并且对查询速度没有什么要求的话可以将负载因子设置的大一点。不过,我们一般不用去设置它,取默认值0.75就好了
扩展:loadfactor为什么是0.75,不是0或者1?
答:如果是0.5,那么每次达到容量的额一般就进行扩容,默认容量是16,达到8就扩容到32,达到16就扩容到64,最终时空空间和未使用空间的差值会逐渐增大,空间利用率地下。如果是1,那就意味着每次空间使用完毕才扩容,在一定程度上回增加put的时间。
问:为什么是0.75,不是0.6或0.8?
理想状态下,在随机哈希值的情况,对于loadfactor = 0.75 ,虽然由于粒度调整会产生较大的方差,桶中的Node的分布频率服从参数为0.5的泊松分布。
2.put方法
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); }
如上述代码所示,HashMap方法调用内部的putVal方法进行插入键值对,putVal方法如下:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length; //当数组table为null时, 调用resize生成数组table, 并令tab指向数组table
if ((p = tab[i = (n - 1) & hash]) == null) //如果新存放的hash值没有冲突
tab[i] = newNode(hash, key, value, null); //则只需要生成新的Node节点并存放到table数组中即可
else { //否则就是产生了hash冲突
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p; //如果hash值相等且key值相等, 则令e指向冲突的头节点
else if (p instanceof TreeNode) //如果头节点的key值与新插入的key值不等, 并且头结点是TreeNode类型,说明该hash值冲突是采用红黑树进行处理.
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); //向红黑树中插入新的Node节点
else { //否则就是采用链表处理hash值冲突
for (int binCount = 0; ; ++binCount) { //遍历冲突链表, binCount记录hash值冲突链表中节点个数
if ((e = p.next) == null) { //当遍历到冲突链表的尾部时
p.next = newNode(hash, key, value, null); //生成新节点添加到链表末尾
if (binCount >= TREEIFY_THRESHOLD - 1) //如果binCount即冲突节点的个数大于等于 (TREEIFY_THRESHOLD(=8) - 1),便将冲突链表改为红黑树结构, 对冲突进行管理, 否则不需要改为红黑树结构
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) //如果在冲突链表中找到相同key值的节点, 则直接用新的value覆盖原来的value值即可
break;
p = e;
}
}
if (e != null) { // 说明原来已经存在相同key的键值对
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null) //onlyIfAbsent为true表示仅当<key,value>不存在时进行插入, 为false表示强制覆盖;
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount; //修改次数自增
if (++size > threshold) //当键值对数量size达到临界值threhold后, 需要进行扩容操作.
resize();
afterNodeInsertion(evict);
return null;
}
3.扩容
HashMap内部提供了reszie函数, 该函数主要用于初始化生成table数组; 或者是将原来的table数组进行扩容, 扩展为原来数组大小的两倍.
在扩容两倍之后, 原来数组中存放的Node要存放到新的数组中, 原来数组中Node的位置在新数组中可以保持不变, 或者一致加上大小为原数组长度的偏移量.
resize函数源代码如下:
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; //oldTab变量指向原来的数组
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold; //oldThr变量保存原来数组的临界值
int newCap, newThr = 0;
if (oldCap > 0) { //说明将要进行扩容操作
if (oldCap >= MAXIMUM_CAPACITY) { //由于最大容量不能超过 MAXMUM_CAPACITY, 当原来数组的容量达到这个值后不能再进行扩容
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY) // 进行两倍扩容
newThr = oldThr << 1;
}
else if (oldThr > 0) // oldCap=0, 说明原来的table数组为null
newCap = oldThr; // 新创建的容器容量为原来容器中设定的临界值
else { //oldCap=0, oldThr=0,所以一切参数采用默认值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor; //新容器的临界值
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; //创建新容量的数组
table = newTab;
if (oldTab != null) { //如果原来的数组中存在值, 需要将原来数组中的值保存到新数组中
for (int j = 0; j < oldCap; ++j) { //遍历原来的数组
Node<K,V> e;
if ((e = oldTab[j]) != null) { //如果原来数组位置中的值不为null, 则需要进行转移
oldTab[j] = null; //置为null, 方便进行GC
if (e.next == null) //说明原来数组中保存的hash值是没有冲突的, 也就是Node类型变量
newTab[e.hash & (newCap - 1)] = e; //将e的hash值和(newCap-1)进行与操作, 从而获取在新数组中的位置
else if (e instanceof TreeNode) // 说明原来数组中保存的hash值存在冲突, 是红黑树 TreeNode 类型变量, 采用红黑树管理冲突的键值对
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // 这说明原来数组中保存的hash值存在冲突, 但是并没有采用红黑树对冲突的Hash值进行管理, 而是采用Node链表进行管理
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//因为需要根据冲突链表中的hash值存放到新数组中,而新数组的长度是原数组长度的2倍, newTable.length-1 比 oldTable.length-1 多oldCap, 因此 hash&(newTable.length-1) 等价于 hash&(oldTable.length-1) + (hash&oldCap ==0 ? 0 : oldCap)
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null); //将链表复制到新数组中
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab; //返回新数组的引用
}
HashMap扩容为什么是2的n次幂:参考:http://nanguocoffee.iteye.com/blog/907824