R package "GGally"
GGally
GGally包作为ggplot2扩展包之一,可以方便的显示配对图矩阵,散点图矩阵,平行坐标图,生存图,以及绘制网络。下面对其功能做代码展示:
Talk is cheap, let’s coding!
首先在R中安装GGally包,显示线性回归各系数显著性。
以iris鸢尾花数据集为例:
#交流Q 63531202
install.packages("GGally")
library(GGally)
reg <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width, data = iris)
ggcoef(reg)
从上图可以看出,除了Petal width系数小于0,其他均大于0。
用GGally显示逻辑回归系数的可视化效果会是怎样呢?
以泰坦尼克号数据为例:
d <- as.data.frame(Titanic)
log.reg <- glm(Survived ~ Sex + Age + Class, family = binomial, data = d, weights = d$Freq)
ggcoef(log.reg, exponentiate = TRUE)
从上图可以直观的看出,女性对于幸存者来说有显著影响。这与泰坦尼克号救援时先救妇女儿童相契合。
除了显示回归系数显著性,GGally包也可以绘制误差线,示例代码如下:
#errorbar======
ggcoef(
log.reg,
exponentiate = TRUE,
vline_color = "red",
vline_linetype = "solid",
errorbar_color = "blue",
errorbar_height = .25
)
这样是不是对于回归系数结果更加一目了然了呢?
library(ggplot2)
ggcoef(log.reg, exponentiate = TRUE, mapping = aes(x = estimate, y = term, size = p.value)) +
scale_size_continuous(trans = "reverse")
可以根据显著性程度调节圆点大小。
下面阐述相关矩阵图的方法,以psychademic数据集为例:
#Canonical Correlation Analysis=========
data(psychademic)
str(psychademic)
(psych_variables <- attr(psychademic, "psychology"))
(academic_variables <- attr(psychademic, "academic"))
ggpairs(psychademic, psych_variables, title = "Within Psychological Variables")
ggpairs(psychademic, academic_variables, title = "Within Academic Variables")
ggduo(
psychademic, psych_variables, academic_variables,
types = list(continuous = "smooth_lm"),
title = "Between Academic and Psychological Variable Correlation",
xlab = "Psychological",
ylab = "Academic"
)
最后,说说GGally在时间序列可视化方面的应用
#Multiple Time Series Analysis=========
library(ggplot2)
data(pigs)
pigs_dt <- pigs[-(2:3)] # remove year and quarter
pigs_dt$profit_group <- as.numeric(pigs_dt$profit > mean(pigs_dt$profit))
qplot(
time, value,
data = reshape::melt.data.frame(pigs_dt, "time"),
geom = c("smooth", "point")
) +
facet_grid(variable ~ ., scales = "free_y")
#交流Q 63531202
R GGally包功能强大,篇幅有限只展示了一些基础功能,有兴趣的小伙伴欢迎随时沟通交流!笔芯!