Java之骑士周游回溯算法

测试方法及核心方法:

public class HorseChessboard {
    private static int X;//棋盘的列数
    private static int Y;//棋盘的行数
    //创建一个数组,标记棋盘的各个位置是否被访问过
    private static boolean visited[];
    //使用一个属性,标记是否棋盘的所有位置都被访问过
    private static boolean finished;//如果是true,表示成功

    public static void main(String[] args) {
        //测试骑士周游算法
        X = 8;
        Y = 8;
        int row = 1;
        ;//马儿初始位置的行,从1 开始编号
        int column = 1;//马儿初始位置的列,从1 开始编号

        //创建棋盘
        int[][] chessboard = new int[X][Y];
        visited = new boolean[X * Y];//初始值都是false
        //测试耗时
        long start = System.currentTimeMillis();
        traversalChessboard(chessboard, row - 1, column - 1, 1);
        long end = System.currentTimeMillis();
        System.out.println(end - start);

        //输出棋盘的最后情况
        for (int[] rows : chessboard) {
            for (int step : rows) {
                System.out.print(step + "\t");
            }
            System.out.println();
        }
    }

    /**
     * 完成骑士周游问题的算法
     *
     * @param chessboard 棋盘
     * @param row        马儿当前的位置的行 从0开始
     * @param column     马儿当前的位置的类 从0开始
     * @param step       是第几步,初始位置就是第1步
     */
    public static void traversalChessboard(int[][] chessboard, int row, int column, int step) {
        chessboard[row][column] = step;
        //row = 4 X=8 column = 4 = 4 * 8 + 4 = 36
        visited[row * X + column] = true;//标记该位置已经访问
        //获取当前位置可以走的下一个位置的集合
        ArrayList<Point> ps = next(new Point(column, row));
        sort(ps);
        //遍历ps
        while (!ps.isEmpty()) {
            Point p = ps.remove(0);//取出下一个可以走的位置
            //判断该点是否已经访问过
            if (!visited[p.y * X + p.x]) {//说明还没有访问过
                traversalChessboard(chessboard, p.y, p.x, step + 1);
            }
        }
        //判断马儿是否完成了任务,使用step 和应该走的步数比较
        //如果没有达到数量,刚表示没有完成任务,将整个棋盘置0
        //说明:step < X * Y  成立的情况有两种
        // 1、棋盘到目前位置,仍然没有走完
        //2、棋盘处于一个回溯过程
        if (step < X * Y && !finished) {
            chessboard[row][column] = 0;
            visited[row * X + column] = false;
        } else {
            finished = true;
        }
    }

    /**
     * 功能:根据当前位置(Point)对象,计算马儿还能走哪些位置(Point),并放入
     * 到一个集合中(ArrayList),最多有8个位置
     *
     * @param curPoint
     * @return
     */
    public static ArrayList<Point> next(Point curPoint) {
        //创建一个ArrayList
        ArrayList<Point> ps = new ArrayList<>();
        //对ps进行排序,排序的规则就是ps的所有的Point对象的下一步的位置的数目,进行非递减排序

        //创建一个Point
        Point p1 = new Point();
        //表示马儿可以走5这个位置
        if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y - 1) >= 0) {
            ps.add(new Point(p1));
        }
        //表示马儿可以走6这个位置
        if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y - 2) >= 0) {
            ps.add(new Point(p1));
        }
        //表示马儿可以走7这个位置
        if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {
            ps.add(new Point(p1));
        }
        //表示马儿可以走0这个位置
        if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {
            ps.add(new Point(p1));
        }
        //表示马儿可以走1这个位置
        if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {
            ps.add(new Point(p1));
        }
        //表示马儿可以走2这个位置
        if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {
            ps.add(new Point(p1));
        }
        //表示马儿可以走3这个位置
        if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {
            ps.add(new Point(p1));
        }
        //表示马儿可以走4这个位置
        if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {
            ps.add(new Point(p1));
        }
        return ps;
    }

    //根据当前这个一不的所有的下一步的选择位置,进行非递减排序,减少回溯的次数
    public static void sort(ArrayList<Point> ps){

        ps.sort(new Comparator<Point>() {
            @Override
            public int compare(Point o1, Point o2) {
                //获取到o1的下一步所有位置个数
                int count1 = next(o1).size();
                //获取到o2的下一步所有位置个数
                int count2 = next(o2).size();
                if (count1<count2){
                    return -1;
                }else if (count1==count2){
                    return 0;
                }else {
                    return 1;
                }
            }
        });
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值